Polynomial growth of discrete quantum groups, topological dimension of the dual and *-regularity of the Fourier algebra
Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2003-2027.

Banica and Vergnioux have shown that the dual discrete quantum group of a compact simply connected Lie group has polynomial growth of order the real manifold dimension. We extend this result to a general compact group and its topological dimension, by connecting it with the Gelfand–Kirillov dimension of an algebra. Furthermore, we show that polynomial growth for a compact quantum group G of Kac type implies * –regularity of the Fourier algebra A(G), that is every closed ideal of C(G) has a dense intersection with A(G). In particular, A(G) has a unique C * –norm.

Banica et Vergnioux ont montré que le groupe quantique discret dual d’un groupe de Lie compact et simplement connexe a croissance polynomiale de degré égal à la dimension réelle de la variété. On étend ce résultat aux groupes compactes quelconques et à leur dimension topologique, en la reliant à la dimension de Gelfand–Kirillov d’une algèbre. De plus, on prouve que la croissance polynomiale, pour un groupe quantique compact de Kac G, implique la * -régularité de l’algèbre de Fourier A(G), c’est-à-dire que tout idéal fermé de C(G) a intersection dense avec A(G). En particulier, A(G) admet une unique norme C * .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3127
Classification: 58B32, 46L65, 43A20, 16P90
Keywords: quantum group, topological dimension, polynomial growth, Fourier algebra
Mot clés : Groupe quantique, dimension topologique, croissance polynomiale, algèbre de Fourier

D’Andrea, Alessandro 1; Pinzari, Claudia 1; Rossi, Stefano 2

1 Dipartimento di Matematica Università degli Studi di Roma “La Sapienza” I-00185 Roma (Italy)
2 Dipartimento di Matematica Università degli Studi di Roma “Tor Vergata” I-00133 Roma (Italy)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_5_2003_0,
     author = {D{\textquoteright}Andrea, Alessandro and Pinzari, Claudia and Rossi, Stefano},
     title = {Polynomial growth of discrete quantum groups, topological dimension of the dual and *-regularity of the {Fourier} algebra},
     journal = {Annales de l'Institut Fourier},
     pages = {2003--2027},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {5},
     year = {2017},
     doi = {10.5802/aif.3127},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3127/}
}
TY  - JOUR
AU  - D’Andrea, Alessandro
AU  - Pinzari, Claudia
AU  - Rossi, Stefano
TI  - Polynomial growth of discrete quantum groups, topological dimension of the dual and *-regularity of the Fourier algebra
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2003
EP  - 2027
VL  - 67
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3127/
DO  - 10.5802/aif.3127
LA  - en
ID  - AIF_2017__67_5_2003_0
ER  - 
%0 Journal Article
%A D’Andrea, Alessandro
%A Pinzari, Claudia
%A Rossi, Stefano
%T Polynomial growth of discrete quantum groups, topological dimension of the dual and *-regularity of the Fourier algebra
%J Annales de l'Institut Fourier
%D 2017
%P 2003-2027
%V 67
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3127/
%R 10.5802/aif.3127
%G en
%F AIF_2017__67_5_2003_0
D’Andrea, Alessandro; Pinzari, Claudia; Rossi, Stefano. Polynomial growth of discrete quantum groups, topological dimension of the dual and *-regularity of the Fourier algebra. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2003-2027. doi : 10.5802/aif.3127. https://aif.centre-mersenne.org/articles/10.5802/aif.3127/

[1] Baaj, Saad; Skandalis, Georges Unitaires multiplicatifs et dualité pour les produits croisés de C * –algèbres, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 4, pp. 425-488 | DOI | Zbl

[2] Banica, Teodor Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | DOI | Zbl

[3] Banica, Teodor; Vergnioux, Roland Growth estimates for discrete quantum groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 12 (2009) no. 2, pp. 321-340 | DOI | Zbl

[4] Barnes, Bruce A. Ideal and representation theory of the L 1 –algebra of a group with polynomial growth, Colloq. Math., Volume 45 (1981), pp. 301-315 | DOI | Zbl

[5] Barnes, Bruce A. The properties * –regularity and uniqueness of * –norm in a general * –algebra, Trans. Am. Math. Soc., Volume 279 (1983), pp. 841-859 | Zbl

[6] Bichon, Julien; De Rijdt, An; Vaes, Stefaan Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Commun. Math. Phys., Volume 262 (2006) no. 3, pp. 703-728 | DOI | Zbl

[7] Boidol, Joachim Group algebras with a unique C * –norm, J. Funct. Anal., Volume 55 (1984), pp. 220-232 | DOI | Zbl

[8] Boidol, Joachim; Leptin, Horst; Schürman, Jürgen; Vahle, D. Räume primitiver Ideale in Gruppenalgebren, Math. Ann., Volume 236 (1978), pp. 1-13 | DOI | Zbl

[9] Bröcker, Theodor; tom Dieck, Tammo Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer, 1985, x+313 pages | Zbl

[10] Caspers, Martijn The L p –Fourier transform on locally compact quantum groups, J. Oper. Theory, Volume 69 (2013) no. 1, pp. 161-193 | DOI | Zbl

[11] Daws, Matthew Multipliers of locally compact quantum groups via Hilbert C * –modules, J. Lond. Math. Soc., Volume 84 (2011) no. 2, pp. 385-407 | DOI | Zbl

[12] Dixmier, Jacques Opérateurs de rang fini dans les représentation unitaires, Publ. Math., Inst. Hautes Étud. Sci., Volume 6 (1960), pp. 13-25 | DOI | Zbl

[13] Eymard, Pierre L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. Fr., Volume 92 (1964), pp. 181-236 | DOI | Zbl

[14] Gelfand, Israel Moiseevich; Kirillov, Alexandre Aleksandrovich Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Publ. Math., Inst. Hautes Étud. Sci., Volume 31 (1966), pp. 506-523 | Zbl

[15] Grigorchuk, Rostislav; Musat, Magdalena; Rørdam, Mikael Just-infinite C * –algebras (2016) (https://arxiv.org/abs/1604.08774v1)

[16] Hewitt, Edwin; Ross, Kenneth A. Abstract harmonic analysis: Volume II: Structure and Analysis for Compact Groups Analysis on Locally Compact Abelian Groups, Grundlehren der Mathematischen Wissenschaften, 152, Springer, 1994, viii+771 pages | Zbl

[17] Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin On topological centre problems and SIN quantum groups, J. Funct. Anal., Volume 257 (2009) no. 2, pp. 610-640 | DOI | Zbl

[18] Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin Multipliers on a new class of Banach algebras, locally compact quantum groups and topological centres, Proc. Lond. Math. Soc., Volume 100 (2010) no. 2, pp. 429-458 | DOI | Zbl

[19] Kahng, Byung-Jay Fourier transform on locally compact quantum groups, J. Oper. Theory, Volume 64 (2010) no. 1, pp. 69-87 | Zbl

[20] Krause, Günter R.; Lenagan, Thomas H. Growth of algebras and Gelfand-Kirillov dimension, Graduate studies in Mathematics, 22, American Mathematical Society, 2000, x+212 pages | Zbl

[21] Kustermans, Johan Locally compact quantum groups in the universal setting, Int. J. Math., Volume 12 (2001) no. 3, pp. 289-338 | DOI | Zbl

[22] Leung, Chi-Wang; Ng, Chi-Keung Some permanence properties of C * –unique groups, J. Funct. Anal., Volume 210 (2004) no. 2, pp. 376-390 | DOI | Zbl

[23] Leung, Chi-Wang; Ng, Chi-Keung Functional calculus and *–regularity of a class of Banach algebras, Proc. Am. Math. Soc., Volume 134 (2005), pp. 755-763 | DOI

[24] Maes, Ann; Van Daele, Alfons Notes on compact quantum groups, Nieuw Arch. Wiskd., Volume 16 (1998) no. 1-2, pp. 73-112 | Zbl

[25] Neshveyev, Sergey; Tuset, Lars Quantized algebras of functions on homogeneous spaces with Poisson stabilizers, Commun. Math. Phys., Volume 312 (2012) no. 1, pp. 223-250 | DOI | Zbl

[26] Neshveyev, Sergey; Tuset, Lars Compact quantum groups and their representation categories, Cours Spécialisés, 20, Société Mathématique de France, 2014, iv+169 pages | Zbl

[27] Neshveyev, Sergey; Yamashita, Makoto Classification of non-Kac compact quantum groups of SU(n) type, Int. Math. Res. Not., Volume 2016 (2016) no. 11, pp. 3356-3391 | DOI

[28] Pinzari, Claudia; Roberts, John E. A duality theorem for ergodic actions of compact quantum groups on C * –algebras, Commun. Math. Phys., Volume 277 (2008) no. 2, pp. 385-421 | DOI | Zbl

[29] Podleś, Piotr Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU (2) and SO (3) groups, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20 | DOI | Zbl

[30] Takahashi, Shuichi Dimension of compact groups and their representations, Tôhoku Math. J., Volume 5 (1953), pp. 178-184 | DOI | Zbl

[31] Vergnioux, Roland The property of rapid decay for discrete quantum groups, J. Oper. Theory, Volume 57 (2007) no. 2, pp. 303-324 | Zbl

[32] Wang, Shuzhou Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | Zbl

[33] Wang, Simeng Lacunary Fourier series for compact quantum groups (2015) (https://arxiv.org/abs/1507.01219v2)

[34] Wang, Simeng L p –Improving convolution operators on finite quantum groups (2015) (https://arxiv.org/abs/1412.2085v2)

[35] Woronowicz, Stanisław Lech Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | Zbl

[36] Woronowicz, Stanisław Lech Compact quantum groups, Symétries quantiques (1998), pp. 845-884 | Zbl

[37] Zhuang, Guangbin Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, J. Lond. Math. Soc., Volume 87 (2013) no. 3, pp. 877-898 | DOI | Zbl

Cited by Sources: