The classical Minkowski problem in Minkowski space asks,given a positive function on , for a convex set in Minkowski space with space-like boundary , such that is the Gauss–Kronecker curvature at the point with normal . Analogously to the Euclidean case, it is possible to formulate a weak version of this problem: given a Radon measure on the generalized Minkowski problem in Minkowski space asks for a convex subset such that the area measure of is .
In the present paper we look at an equivariant version of the problem: given a uniform lattice of isometries of , a invariant Radon measure and an isometry group of Minkowski space with as linear part, there exists a unique convex set with area measure , invariant under the action of . The proof uses a functional which is the covolume associated to every invariant convex set.
This result translates as a solution of the Minkowski problem in flat space times with compact hyperbolic Cauchy surface. The uniqueness part, as well as the regularity results, follow from properties of the Monge–Ampère equation. The existence part can be translated as an existence result for Monge–Ampère equation.
The regular version was proved by T. Barbot, F. Béguin and A. Zeghib for and by V. Oliker and U. Simon for . Our method is totally different. Moreover, we show that those cases are very specific: in general, there is no smooth -invariant hypersurface of constant Gauss–Kronecker curvature equal to .
La forme classique du problème de Minkowski dans l’espace de Minkowski est la recherche, pour une fonction positive sur , d’un ensemble convexe dans l’espace de Minkowski, avec un bord de type espace, tel que soit la courbure de Gauss–Kronecker au point dont la normale est . De façon analogue au cas euclidien, il est possible de formuler une version faible de ce problème : étant donné un mesure de Radon sur , le problème de Minkowski généralisé dans l’espace de Minkowski est la recherche d’un ensemble convexe tel que la mesure d’aire de est .
Dans ce travail nous regardons une version équivariante de ce problème : étant donné un réseau uniforme d’isométries de , étant donné une mesure de Radon invariante pour l’action de , étant donné un groupe d’isométries de l’espace de Minkowski, dont est la partie linéaire, il existe un unique ensemble convexe de mesure d’aire , et qui est invariant sous l’action de . La preuve utilise une fonctionnelle, le covolume associé à tout ensemble convexe invariant.
Ce résultat donne une solution du problème de Minkowski dans des espace-temps plats avec des surfaces de Cauchy compactes. L’unicité de la solution, ainsi que les résultats à propos de la régularité de la solution, sont des conséquences de propriétés de l’équation de Monge–Ampère. L’existence de la solution se traduit en un résultat d’existence pour l’équation de Monge–Ampère.
La version régulière de notre résultat a été montrée par T. Barbot, F. Béguin et A. Zeghib dans le cas et par V. Oliker et U. Simon quand . Notre méthode est totalement différente. De plus, nous montrons que ces deux cas sont vraiment spéciaux : en général, il n’existe pas d’hypersurface lisse invariante sous l’action de ayant une courbure de Gauss–Kronecker constante égale à .
Revised:
Accepted:
Published online:
Keywords: Minkowski problem, Lorentzian geometry, covolume, Monge–Ampère equation
Mot clés : Problème de Minkowski, géométrie lorentzienne, covolume, équation de Monge–Ampère
Bonsante, Francesco 1; Fillastre, François 2
@article{AIF_2017__67_3_1035_0, author = {Bonsante, Francesco and Fillastre, Fran\c{c}ois}, title = {The equivariant {Minkowski} problem in {Minkowski} space}, journal = {Annales de l'Institut Fourier}, pages = {1035--1113}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {3}, year = {2017}, doi = {10.5802/aif.3105}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3105/} }
TY - JOUR AU - Bonsante, Francesco AU - Fillastre, François TI - The equivariant Minkowski problem in Minkowski space JO - Annales de l'Institut Fourier PY - 2017 SP - 1035 EP - 1113 VL - 67 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3105/ DO - 10.5802/aif.3105 LA - en ID - AIF_2017__67_3_1035_0 ER -
%0 Journal Article %A Bonsante, Francesco %A Fillastre, François %T The equivariant Minkowski problem in Minkowski space %J Annales de l'Institut Fourier %D 2017 %P 1035-1113 %V 67 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3105/ %R 10.5802/aif.3105 %G en %F AIF_2017__67_3_1035_0
Bonsante, Francesco; Fillastre, François. The equivariant Minkowski problem in Minkowski space. Annales de l'Institut Fourier, Volume 67 (2017) no. 3, pp. 1035-1113. doi : 10.5802/aif.3105. https://aif.centre-mersenne.org/articles/10.5802/aif.3105/
[1] On the theory of mixed volumes II, Mat. Sbornik, Volume 44 (1937), pp. 1205-1238 (in Russian, translated in [2])
[2] Selected works. Part I, Classics of Soviet Mathematics, 4, Gordon and Breach Publishers, 1996, x+322 pages (Selected scientific papers, Translated from the Russian by P. S. V. Naidu, Edited and with a preface by Yu. G. Reshetnyak and S. S. Kutateladze)
[3] Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005) no. 2, pp. 123-165 | DOI
[4] Domaines globalement hyperboliques de l’espace de Minkowski et de l’espace anti-de Sitter, Algèbre, dynamique et analyse pour la géométrie : aspects récents, Ellipses, 2010, pp. 101-138 (Proceedings des Écoles de Géométrie et Systèmes dynamiques, Algérie, 2004-2007)
[5] Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier, Volume 61 (2011) no. 2, pp. 511-591 | DOI
[6] Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature, Université d’Avignon (France) (2013) (Ph. D. Thesis)
[7] Asymptotic behavior of Cauchy hypersurfaces in constant curvature space-times (2015) (https://arxiv.org/abs/1503.06343)
[8] Prescription of Gauss curvature on compact hyperbolic orbifolds, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1269-1284 | DOI
[9] Manifolds of negative curvature, Trans. Am. Math. Soc., Volume 145 (1969), pp. 1-49 | DOI
[10] Theory of convex bodies, BCS Associates, Moscow, ID, 1987, x+172 pages (Translated from the German and edited by L. Boron, C. Christenson and B. Smith)
[11] Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differ. Geom., Volume 69 (2005) no. 3, pp. 441-521 http://projecteuclid.org/getRecord?id=euclid.jdg/1122493997 | DOI
[12] Recovering the geometry of a flat spacetime from background radiation, Ann. Henri Poincaré, Volume 15 (2014) no. 9, pp. 1733-1799 | DOI
[13] On a theorem of Alexandrov, J. Nonlinear Convex Anal., Volume 5 (2004) no. 1, pp. 49-58
[14] On the regularity of the Monge-Ampère equation , Commun. Pure Appl. Math., Volume 30 (1977) no. 1, pp. 41-68 | DOI
[15] Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | DOI
[16] Fuchsian convex bodies: basics of Brunn-Minkowski theory, Geom. Funct. Anal., Volume 23 (2013) no. 1, pp. 295-333 | DOI
[17] Lorentzian area measures and the Christoffel problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 16 (2016) no. 2, pp. 383-467
[18] Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space, J. Reine Angew. Math., Volume 595 (2006), pp. 167-188 | DOI
[19] The Monge-Ampère equation, Progress in Nonlinear Differential Equations and their Applications, 44, Birkhäuser, Boston, MA, 2001, xii+127 pages | DOI
[20] Convex analysis and minimization algorithms. I, Grundlehren der Mathematischen Wissenschaften, 305, Springer-Verlag, Berlin, 1993, xvii+417 pages (Fundamentals)
[21] Matrix analysis, Cambridge University Press, 1990, xiii+561 pages (Corrected reprint of the 1985 original)
[22] On the theory of coconvex bodies, Discrete Comput. Geom., Volume 52 (2014) no. 4, pp. 806-823 | DOI
[23] Spacelike hypersurfaces with constant Gauss–Kronecker curvature in the Minkowski space, Arch. Math., Volume 64 (1995) no. 6, pp. 534-551 | DOI
[24] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI
[25] Convex surfaces with positive bounded specific curvature, and a priori estimates for Monge-Ampère equations, Sibirsk. Mat. Zh., Volume 26 (1985) no. 4, p. 120-136, 205
[26] Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature, J. Reine Angew. Math., Volume 342 (1983), pp. 35-65
[27] Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, 35, American Mathematical Society, 1973, vi+669 pages (Translated from the Russian by Israel Program for Scientific Translations)
[28] The Minkowski multidimensional problem, V. H. Winston & Sons, Washington, D.C., 1978, 106 pages (Translated from the Russian by Vladimir Oliker, Introduction by Louis Nirenberg, Scripta Series in Mathematics)
[29] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer-Verlag, New York, 2006, xii+779 pages
[30] The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mt. J. Math., Volume 7 (1977) no. 2, pp. 345-364 | DOI
[31] Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, 1997, xviii+451 pages (Reprint of the 1970 original, Princeton Paperbacks)
[32] Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer-Verlag, Berlin, 1998, xiv+733 pages | DOI
[33] Infinitesimal deformations of some lattices, Pac. J. Math., Volume 194 (2000) no. 2, pp. 455-464 | DOI
[34] Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, 1993, xiii+490 pages | DOI
[35] The Monge-Ampère equation and its applications, Handbook of geometric analysis. No. 1 (Adv. Lect. Math. (ALM)), Volume 7, Int. Press, Somerville, MA, 2008, pp. 467-524
Cited by Sources: