On the cancellation problem for algebraic tori
[Sur le Problème de Simplification pour les tores algébriques]
Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2621-2640.

Nous considérons une variante du Problème de Simplification de Zariski pour les tores algébriques : deux variétés algébriques dont les produits cartésiens avec un même tore algébrique sont isomorphes sont-elles isomorphes ? Un argument élémentaire montre que les courbes algébriques possèdent cette propriété de simplification. Un résultat très général de simplification du à Iitaka et Fujita implique qu’il en est de même pour les variétés de type log-général ou non 𝔸 * 1 -réglées. Dans cet article, nous construisons en toute dimension supérieure ou égale à deux des couples de variétés factorielles 𝔸 * 1 -réglées ne possèdant pas la propriété de simplification par des tores.

We address a variant of Zariski Cancellation Problem, asking whether two varieties which become isomorphic after taking their product with an algebraic torus are isomorphic themselves. Such cancellation property is easily checked for curves, is known to hold for smooth varieties of log-general type by virtue of a result of Iitaka-Fujita and more generally for non 𝔸 * 1 -uniruled varieties. We show in contrast that for smooth affine factorial 𝔸 * 1 -ruled varieties, cancellation fails in any dimension bigger than or equal to two.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3073
Classification : 14R05, 14L30
Keywords: cancellation problem, algebraic tori, principal bundles
Mot clés : problème de simplification, tores algébriques, fibrés principaux

Dubouloz, Adrien 1

1 IMB UMR5584, CNRS Univ. Bourgogne Franche-Comté F-21000 Dijon (France)
@article{AIF_2016__66_6_2621_0,
     author = {Dubouloz, Adrien},
     title = {On the cancellation problem for algebraic tori},
     journal = {Annales de l'Institut Fourier},
     pages = {2621--2640},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {66},
     number = {6},
     year = {2016},
     doi = {10.5802/aif.3073},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3073/}
}
TY  - JOUR
AU  - Dubouloz, Adrien
TI  - On the cancellation problem for algebraic tori
JO  - Annales de l'Institut Fourier
PY  - 2016
SP  - 2621
EP  - 2640
VL  - 66
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3073/
DO  - 10.5802/aif.3073
LA  - en
ID  - AIF_2016__66_6_2621_0
ER  - 
%0 Journal Article
%A Dubouloz, Adrien
%T On the cancellation problem for algebraic tori
%J Annales de l'Institut Fourier
%D 2016
%P 2621-2640
%V 66
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3073/
%R 10.5802/aif.3073
%G en
%F AIF_2016__66_6_2621_0
Dubouloz, Adrien. On the cancellation problem for algebraic tori. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2621-2640. doi : 10.5802/aif.3073. https://aif.centre-mersenne.org/articles/10.5802/aif.3073/

[1] Asanuma, Teruo Polynomial fibre rings of algebras over Noetherian rings, Invent. Math., Volume 87 (1987) no. 1, pp. 101-127 | DOI

[2] Behrend, Kai; Noohi, Behrang Uniformization of Deligne-Mumford curves, J. Reine Angew. Math., Volume 599 (2006), pp. 111-153 | DOI

[3] Danielewski, W. On a cancellation problem and automorphism groups of affine algebraic varieties (1989) (preprint Warsaw)

[4] Dubouloz, Adrien; Finston, David R. On exotic affine 3-spheres, J. Algebraic Geom., Volume 23 (2014) no. 3, pp. 445-469 | DOI

[5] Fieseler, Karl-Heinz; Kaup, Ludger On the geometry of affine algebraic C * -surfaces, Problems in the theory of surfaces and their classification (Cortona, 1988) (Sympos. Math., XXXII), Academic Press, London, 1991, pp. 111-140

[6] Freudenburg, Gene Laurent cancellation for rings of transcendence degree one over a field, Automorphisms in birational and affine geometry (Springer Proc. Math. Stat.), Volume 79, Springer, Cham, 2014, pp. 313-326 | DOI

[7] Giraud, Jean Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971, ix+467 pages (Die Grundlehren der mathematischen Wissenschaften, Band 179)

[8] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966) no. 28, 255 pages

[9] Gupta, Neena On the cancellation problem for the affine space 𝔸 3 in characteristic p, Invent. Math., Volume 195 (2014) no. 1, pp. 279-288 | DOI

[10] Gurjar, R. V.; Paul, Shameek A classification of factorial surfaces of nongeneral type, Michigan Math. J., Volume 61 (2012) no. 3, pp. 517-529 | DOI

[11] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages (Graduate Texts in Mathematics, No. 52)

[12] Iitaka, S. On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 175-189

[13] Iitaka, Shigeru; Fujita, Takao Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 24 (1977) no. 1, pp. 123-127

[14] Kawamata, Yujiro Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), pp. 207-217

[15] Magid, Andy R. The Picard sequences of a fibration, Proc. Amer. Math. Soc., Volume 53 (1975) no. 1, pp. 37-40

[16] Miyanishi, Masayoshi Open algebraic surfaces, CRM Monograph Series, 12, American Mathematical Society, Providence, RI, 2001, viii+259 pages

[17] Miyanishi, Masayoshi; Sugie, Tohru Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., Volume 20 (1980) no. 1, pp. 11-42

Cité par Sources :