We extend Kisin’s results on the structure of characteristic Galois deformation rings to deformation rings of Galois representations valued in arbitrary connected reductive groups . In particular, we show that such Galois deformation rings are complete intersections. In addition, we study explicitly the structure of the moduli space of (framed) -modules when . We show that when and , has a singular irreducible component, and we construct a moduli-theoretic resolution of singularities.
Nous étendons les résultats de Kisin sur la structure des anneaux de déformations de représentations galoisiennes en caractéristique aux anneaux de déformations de représentations galoisiennes à valeurs dans des groupes connexes reductifs . En particulier, nous prouvons que ces anneaux de déformations de représentations galoisiennes sont d’intersection complète. De plus, nous étudions la structure de l’espace de modules des -modules (cadrés) quand . Nous prouvons que a une composante irréductible singulière quand , et nous construisons une résolution des singularités avec interprétation modulaire.
Revised:
Accepted:
Published online:
Keywords: $p$-adic Hodge theory, deformation rings, algebraic groups
Mots-clés : théorie d’Hodge $p$-adique, anneaux de déformations, groupes algébrique
Bellovin, Rebecca 1
@article{AIF_2016__66_6_2565_0, author = {Bellovin, Rebecca}, title = {Generic smoothness for $G$-valued potentially semi-stable deformation rings}, journal = {Annales de l'Institut Fourier}, pages = {2565--2620}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3072}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3072/} }
TY - JOUR AU - Bellovin, Rebecca TI - Generic smoothness for $G$-valued potentially semi-stable deformation rings JO - Annales de l'Institut Fourier PY - 2016 SP - 2565 EP - 2620 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3072/ DO - 10.5802/aif.3072 LA - en ID - AIF_2016__66_6_2565_0 ER -
%0 Journal Article %A Bellovin, Rebecca %T Generic smoothness for $G$-valued potentially semi-stable deformation rings %J Annales de l'Institut Fourier %D 2016 %P 2565-2620 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3072/ %R 10.5802/aif.3072 %G en %F AIF_2016__66_6_2565_0
Bellovin, Rebecca. Generic smoothness for $G$-valued potentially semi-stable deformation rings. Annales de l'Institut Fourier, Volume 66 (2016) no. 6, pp. 2565-2620. doi : 10.5802/aif.3072. https://aif.centre-mersenne.org/articles/10.5802/aif.3072/
[1] G-valued potentially semi-stable deformation rings, ProQuest LLC, Ann Arbor, MI, 2012, 71 pages Thesis (Ph.D.)–The University of Chicago
[2] -adic Hodge theory in rigid analytic families, Algebra Number Theory, Volume 9 (2015) no. 2, pp. 371-433 | DOI
[3] Generic fibers of deformation rings (http://math.stanford.edu/~conrad/modseminar/pdf/L04.pdf)
[4] Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 2, pp. 473-541 | DOI
[5] Reductive group schemes, Proceedings of the SGA3 Summer School (Luminy, Aug.-Sept. 2011), Volume 1 (Panoramas et Synthèses), Societé Mathematique de France, 2014 (To appear. Available at http://www.math.ens.fr/~gille/sem/notes434.html)
[6] Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties (LNM), Volume 900, Springer, New York, 1982, pp. 101-228
[7] Séminaire de géométrie algébrique du Bois Marie 1962/64; Schémas en groupes, 3, Springer, 1970
[8] The universal family of semi-stable -adic Galois representations (Preprint. http://arxiv.org/abs/1312.6371)
[9] Linear algebraic groups, Springer-Verlag, New York, 1975, xiv+247 pages (Graduate Texts in Mathematics, No. 21)
[10] Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, 43, American Mathematical Society, Providence, RI, 1995, xviii+196 pages
[11] Nilpotent orbits in representation theory, Lie theory (Progr. Math.), Volume 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1-211
[12] Potentially semi-stable deformation rings, J. Amer. Math. Soc., Volume 21 (2008) no. 2, pp. 513-546 | DOI
[13] The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 641-690 | DOI
[14] Moduli of finite flat group schemes and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI
[15] e-mail to Brian Conrad, 2012
[16] Nilpotent subalgebras of semisimple Lie algebras, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 9-10, pp. 477-482 | DOI
[17] Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pages (Translated from the Japanese by M. Reid)
[18] An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 243-311
[19] Nilpotent orbits over ground fields of good characteristic, Math. Ann., Volume 329 (2004) no. 1, pp. 49-85 | DOI
[20] Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin, 1972, ii+418 pages
[21] Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, Cambridge, 2003, xiv+371 pages | DOI
Cited by Sources: