Consider a push-out diagram of spaces , construct the homotopy push-out, and then the homotopy pull-back of the diagram one gets by forgetting the initial object . We compare the difference between and this homotopy pull-back. This difference is measured in terms of the homotopy fibers of the original maps. Restricting our attention to the connectivity of these maps, we recover the classical Blakers–Massey Theorem.
Considérons un diagramme d’espaces , construisons le push-out homotopique, puis le pull-back homotopique du diagramme obtenu en oubliant l’objet initial . Nous comparons la différence entre et ce pull-back homomotopique. Cette différence est mesurée en termes des fibres homotopiques des applications originales. En restreignant notre attention sur la connectivité de ces applications nous obtenons la version classique du Théorème de Blakers–Massey.
Revised:
Accepted:
Published online:
Classification: 55P65, 55U35, 55P35, 55P40, 18A30
Keywords: homotopy excision, cellular inequality, total fiber, homotopy localization
@article{AIF_2016__66_6_2641_0, author = {Chach\'olski, Wojciech and Scherer, J\'er\^ome and Werndli, Kay}, title = {Homotopy excision and cellularity}, journal = {Annales de l'Institut Fourier}, pages = {2641--2665}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3074}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3074/} }
TY - JOUR TI - Homotopy excision and cellularity JO - Annales de l'Institut Fourier PY - 2016 DA - 2016/// SP - 2641 EP - 2665 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3074/ UR - https://doi.org/10.5802/aif.3074 DO - 10.5802/aif.3074 LA - en ID - AIF_2016__66_6_2641_0 ER -
Chachólski, Wojciech; Scherer, Jérôme; Werndli, Kay. Homotopy excision and cellularity. Annales de l'Institut Fourier, Volume 66 (2016) no. 6, pp. 2641-2665. doi : 10.5802/aif.3074. https://aif.centre-mersenne.org/articles/10.5802/aif.3074/
[1] Calculus of functors and model categories, Adv. Math., Tome 214 (2007) no. 1, pp. 92-115 | Article
[2] The homotopy groups of a triad. II, Ann. of Math. (2), Tome 55 (1952), pp. 192-201 | Article
[3] Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc., Tome 7 (1994) no. 4, pp. 831-873 | Article
[4] Homotopical excision, and Hurewicz theorems for -cubes of spaces, Proc. London Math. Soc. (3), Tome 54 (1987) no. 1, pp. 176-192 | Article
[5] Closed classes, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) (Progr. Math.) Tome 136, Birkhäuser, Basel, 1996, pp. 95-118 | Article
[6] On the functors and , Duke Math. J., Tome 84 (1996) no. 3, pp. 599-631 | Article
[7] Desuspending and delooping cellular inequalities, Invent. Math., Tome 129 (1997) no. 1, pp. 37-62 | Article
[8] A generalization of the triad theorem of Blakers-Massey, Topology, Tome 36 (1997) no. 6, pp. 1381-1400 | Article
[9] Cellular properties of nilpotent spaces, Geom. Topol., Tome 19 (2015) no. 5, pp. 2741-2766 | Article
[10] Homotopy theory of diagrams, Mem. Amer. Math. Soc., Tome 155 (2002) no. 736, x+90 pages | Article
[11] Higher homotopy excision and Blakers-Massey theorems for structured ring spectra (2014) (preprint, http://arxiv.org/abs/1402.4775)
[12] Homotopy theory of G–diagrams and equivariant excision, Algebr. Geom. Topol., Tome 16 (2016) no. 1, pp. 325-395 | Article
[13] Higher-dimensional crossed modules and the homotopy groups of -ads, J. Pure Appl. Algebra, Tome 46 (1987) no. 2-3, pp. 117-136 | Article
[14] Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, Tome 1622, Springer-Verlag, Berlin, 1996, xiv+199 pages
[15] Two completion towers for generalized homology, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999) (Contemp. Math.) Tome 265, Amer. Math. Soc., Providence, RI, 2000, pp. 27-39 | Article
[16] Calculus. II. Analytic functors, -Theory, Tome 5 (1991/92) no. 4, pp. 295-332 | Article
[17] Derivators, pointed derivators and stable derivators, Algebr. Geom. Topol., Tome 13 (2013) no. 1, pp. 313-374 | Article
[18] Fake wedges, Trans. Amer. Math. Soc., Tome 366 (2014) no. 7, pp. 3771-3786 | Article
[19] Pull-backs in homotopy theory, Canad. J. Math., Tome 28 (1976) no. 2, pp. 225-263 | Article
[20] Cubical Homotopy Theory, new mathematical monographs, Tome 28, Cambridge University Press, 2015, xv+631 pages
[21] A remark on “homotopy fibrations”, Manuscripta Math., Tome 12 (1974), pp. 113-120 | Article
[22] Orthogonal calculus, Trans. Amer. Math. Soc., Tome 347 (1995) no. 10, pp. 3743-3796 | Article
[23] Elements of homotopy theory, Graduate Texts in Mathematics, Tome 61, Springer-Verlag, New York-Berlin, 1978, xxi+744 pages
Cited by Sources: