We prove a version of the Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic. In particular we calculate the genus–zero FJRW theory for the pair where is the Fermat quintic polynomial and . We identify it with the Gromov–Witten theory of the mirror quintic three–fold via an explicit analytic continuation and symplectic transformation. In the process we prove a mirror theorem for the corresponding Landau–Ginzburg model .
Nous montrons une version de la correspondance Landau–Ginzburg/ Calabi–Yau pour le miroir quintique. Plus précisément, on calcule la théorie FJRW en genre zéro pour la paire , où est le polynôme de Fermat quintique et . On l’identifie ensuite avec la théorie de Gromov–Witten de la quintique avec une continuation analytique explicite et une transformation symplectique. On démontre au passage un théorème miroir pour le modèle de Landau–Ginzburg correspondant.
Accepted:
Published online:
Classification: 14N35, 14J33, 53D45, 14J17, 32G20
Keywords: Landau–Ginzburg, Calabi–Yau, Mirror symmetry
@article{AIF_2016__66_3_1045_0, author = {Priddis, Nathan and Shoemaker, Mark}, title = {A {Landau{\textendash}Ginzburg/Calabi{\textendash}Yau} correspondence for the mirror quintic}, journal = {Annales de l'Institut Fourier}, pages = {1045--1091}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {3}, year = {2016}, doi = {10.5802/aif.3031}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3031/} }
TY - JOUR TI - A Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic JO - Annales de l'Institut Fourier PY - 2016 DA - 2016/// SP - 1045 EP - 1091 VL - 66 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3031/ UR - https://doi.org/10.5802/aif.3031 DO - 10.5802/aif.3031 LA - en ID - AIF_2016__66_3_1045_0 ER -
Priddis, Nathan; Shoemaker, Mark. A Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic. Annales de l'Institut Fourier, Volume 66 (2016) no. 3, pp. 1045-1091. doi : 10.5802/aif.3031. https://aif.centre-mersenne.org/articles/10.5802/aif.3031/
[1] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Tome 130 (2008) no. 5, pp. 1337-1398
[2] Orbifold Gromov–Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.) Tome 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25-85
[3] A new cohomology theory of orbifold, Comm. Math. Phys., Tome 248 (2004) no. 1, pp. 1-31
[4] Landau-Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci., Tome 119 (2014), pp. 127-216
[5] Landau–Ginzburg/Calabi–Yau correspondence for quintic three–folds via symplectic transformations, Invent. Math., Tome 182 (2010) no. 1, pp. 117-165
[6] LG/CY correspondence: the state space isomorphism, Adv. Math., Tome 227 (2011) no. 6, pp. 2157-2188
[7] Twisted –spin potential and Givental’s quantization, Adv. Theor. Math. Phys., Tome 13 (2009) no. 5, pp. 1335-1369 http://projecteuclid.org.proxy.lib.umich.edu/getRecord?id=euclid.atmp/1282054097
[8] Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections and (2013) (http://arxiv.org/abs/1301.5530v3)
[9] Geometric Quantization with Applications to Gromov–Witten Theory (2013) (http://arxiv.org/abs/1309.1150)
[10] Computing genus–zero twisted Gromov–Witten invariants, Duke Math. J., Tome 147 (2009) no. 3, pp. 377-438
[11] Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, Tome 68, American Mathematical Society, Providence, RI, 1999, xxii+469 pages
[12] The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2), Tome 178 (2013) no. 1, pp. 1-106
[13] Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices (1996) no. 13, pp. 613-663
[14] Symplectic geometry of Frobenius structures, Frobenius manifolds (Aspects Math., E36), Friedr. Vieweg, Wiesbaden, 2004, pp. 91-112
[15] Localization of virtual classes, Invent. Math., Tome 135 (1999) no. 2, pp. 487-518
[16] A Landau–Ginzburg mirror theorem without concavity (2013) (http://arxiv.org/abs/1307.5070, to appear in Duke Math. J.)
[17] Landau–Ginzburg/Calabi–Yau Correspondence of all Genera for Elliptic Orbifold (2011) (http://arxiv.org/abs/1106.6270)
[18] A mirror theorem for the mirror quintic, Geom. Topol., Tome 18 (2014) no. 3, pp. 1437-1483
[19] Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol., Tome 14 (2010) no. 1, pp. 1-81
[20] Catastrophes and the classification of conformal theories, Phys. Lett. B, Tome 218 (1989) no. 1, pp. 51-58
[21] Mirror manifolds and topological field theory, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 120-158
Cited by Sources: