We establish a sufficient condition for vanishing of the -cohomology of hyperbolic uniformly contractible simplicial complexes, in degree at least . As an application, a geometric lower bound for the conformal dimension of the boundary at infinity of some hyperbolic groups, is obtained.
On donne une condition suffisante pour l’annulation de la cohomologie en degré supérieur à , des complexes simpliciaux hyperboliques uniformément contractiles. Comme application, on obtient une minoration de la dimension conforme du bord à l’infini de certains groupes hyperboliques.
Revised:
Accepted:
Published online:
Mot clés : cohomologie $\ell _p$, dimension conforme, espaces hyperboliques
Keywords: $\ell _p$-cohomology, conformal dimension, hyperbolic spaces
Bourdon, Marc 1
@article{AIF_2016__66_3_1013_0, author = {Bourdon, Marc}, title = {Cohomologie $\ell _p$ en degr\'es sup\'erieurs et dimension conforme}, journal = {Annales de l'Institut Fourier}, pages = {1013--1043}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {3}, year = {2016}, doi = {10.5802/aif.3030}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3030/} }
TY - JOUR AU - Bourdon, Marc TI - Cohomologie $\ell _p$ en degrés supérieurs et dimension conforme JO - Annales de l'Institut Fourier PY - 2016 SP - 1013 EP - 1043 VL - 66 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3030/ DO - 10.5802/aif.3030 LA - fr ID - AIF_2016__66_3_1013_0 ER -
%0 Journal Article %A Bourdon, Marc %T Cohomologie $\ell _p$ en degrés supérieurs et dimension conforme %J Annales de l'Institut Fourier %D 2016 %P 1013-1043 %V 66 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3030/ %R 10.5802/aif.3030 %G fr %F AIF_2016__66_3_1013_0
Bourdon, Marc. Cohomologie $\ell _p$ en degrés supérieurs et dimension conforme. Annales de l'Institut Fourier, Volume 66 (2016) no. 3, pp. 1013-1043. doi : 10.5802/aif.3030. https://aif.centre-mersenne.org/articles/10.5802/aif.3030/
[1] Plongements lipschitziens dans , Bull. Soc. Math. France, Volume 111 (1983) no. 4, pp. 429-448
[2] The boundary of negatively curved groups, J. Amer. Math. Soc., Volume 4 (1991) no. 3, pp. 469-481 | DOI
[3] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 266-306 | DOI
[4] Uniformizing Gromov hyperbolic spaces, Astérisque (2001) no. 270, viii+99 pages
[5] Rigidity for quasi-Möbius group actions, J. Differential Geom., Volume 61 (2002) no. 1, pp. 81-106 http://projecteuclid.org/euclid.jdg/1090351321
[6] Structure conforme au bord et flot géodésique d’un -espace, Enseign. Math. (2), Volume 41 (1995) no. 1-2, pp. 63-102
[7] Cohomologie et produits amalgamés, Geom. Dedicata, Volume 107 (2004), pp. 85-98 | DOI
[8] Cohomologie et actions isométriques propres sur les espaces , Geometry, Topology, and Dynamics in Negative Curvature (2016) (à paraître)
[9] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 39-107 | DOI
[10] Some applications of -cohomology to boundaries of Gromov hyperbolic spaces, Groups Geom. Dyn., Volume 9 (2015) no. 2, pp. 435-478 | DOI
[11] Cohomologie et espaces de Besov, J. Reine Angew. Math., Volume 558 (2003), pp. 85-108 | DOI
[12] Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) (London Math. Soc. Lecture Note Ser.), Volume 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3-92
[13] Conformal dimension and canonical splittings of hyperbolic groups, Geom. Funct. Anal., Volume 24 (2014) no. 3, pp. 922-945 | DOI
[14] Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math., Volume 159 (1993) no. 2, pp. 241-270 http://projecteuclid.org/euclid.pjm/1102634263
[15] de Rham-Hodge theory for -cohomology of infinite coverings, Topology, Volume 16 (1977) no. 2, pp. 157-165
[16] On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math., Volume 106 (1984) no. 1, pp. 169-185 | DOI
[17] The -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata, Volume 68 (1997) no. 3, pp. 263-279 | DOI
[18] Coarse cohomology and -cohomology, -Theory, Volume 13 (1998) no. 1, pp. 1-22 | DOI
[19] Isoperimetric functions of groups and exotic cohomology, Combinatorial and geometric group theory (Edinburgh, 1993) (London Math. Soc. Lecture Note Ser.), Volume 204, Cambridge Univ. Press, Cambridge, 1995, pp. 87-104
[20] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI
[21] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295
[22] Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pages | DOI
[23] Spaces and groups with conformal dimension greater than one, Duke Math. J., Volume 153 (2010) no. 2, pp. 211-227 | DOI
[24] Conformal dimension, University Lecture Series, 54, American Mathematical Society, Providence, RI, 2010, xiv+143 pages (Theory and application) | DOI
[25] Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 287, Springer-Verlag, Berlin, 1988, xiv+326 pages
[26] Cohomologie , espaces homogènes et pincement Preprint Université Paris-Sud (1999)
[27] Cohomologie des variétés à courbure négative, cas du degré , Rend. Sem. Mat. Univ. Politec. Torino (1989) no. Special Issue, p. 95-120 (1990) Conference on Partial Differential Equations and Geometry (Torino, 1988)
[28] Cohomologie en degré 1 des espaces homogènes, Potential Anal., Volume 27 (2007) no. 2, pp. 151-165 | DOI
[29] Cohomologie et pincement, Comment. Math. Helv., Volume 83 (2008) no. 2, pp. 327-357 | DOI
[30] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2), Volume 54 (1996) no. 1, pp. 50-74 | DOI
[31] Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973, xiii+397 pages (McGraw-Hill Series in Higher Mathematics)
[32] Geometric integration theory, Princeton University Press, Princeton, N. J., 1957, xv+387 pages
Cited by Sources: