Sliding invariants and classification of singular holomorphic foliations in the plane
[Invariants de glissement et classification de feuilletages holomorphes singuliers dans le plan]
Annales de l'Institut Fourier, Tome 65 (2015) no. 5, pp. 1897-1920.

Par l’introduction d’un nouvel invariant appelé l’ensemble des glissements, nous donnons une classification stricte complète de la classe des germes de feuilletages holomorphes non dicritiques dont les indices de Camacho-Sad ne sont pas rationnels. Par ailleurs, nous allons montrer que, dans cette classe, le nouvel invariant est de détermination finie. Par conséquent, nous obtenons la détermination finie de la classe des feuilletages non dicritiques isoholonomiques et de feuilletages absolument dicritiques qui ont les mêmes applications de Dulac.

By introducing a new invariant called the set of slidings, we give a complete strict classification of the class of germs of non-dicritical holomorphic foliations in the plan whose Camacho-Sad indices are not rational. Moreover, we will show that, in this class, the new invariant is finitely determined. Consequently, the finite determination of the class of isoholonomic non-dicritical foliations and absolutely dicritical foliations that have the same Dulac maps is proved.

DOI : 10.5802/aif.2976
Classification : 34M35, 32S65
Keywords: Invariant of foliations, sliding invariant, classification of foliations, finite determination of foliations
Mot clés : Invariants de glissement, feuilletages holomorphes, classification

Truong, Hong Minh 1

1 UMR5219 Institut de Mathématiques de Toulouse Université Toulouse 3 UFR MIG Bât. 1R3 31062 TOULOUSE CEDEX 9
@article{AIF_2015__65_5_1897_0,
     author = {Truong, Hong Minh},
     title = {Sliding invariants and classification of singular holomorphic foliations in the plane},
     journal = {Annales de l'Institut Fourier},
     pages = {1897--1920},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {5},
     year = {2015},
     doi = {10.5802/aif.2976},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2976/}
}
TY  - JOUR
AU  - Truong, Hong Minh
TI  - Sliding invariants and classification of singular holomorphic foliations in the plane
JO  - Annales de l'Institut Fourier
PY  - 2015
SP  - 1897
EP  - 1920
VL  - 65
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2976/
DO  - 10.5802/aif.2976
LA  - en
ID  - AIF_2015__65_5_1897_0
ER  - 
%0 Journal Article
%A Truong, Hong Minh
%T Sliding invariants and classification of singular holomorphic foliations in the plane
%J Annales de l'Institut Fourier
%D 2015
%P 1897-1920
%V 65
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2976/
%R 10.5802/aif.2976
%G en
%F AIF_2015__65_5_1897_0
Truong, Hong Minh. Sliding invariants and classification of singular holomorphic foliations in the plane. Annales de l'Institut Fourier, Tome 65 (2015) no. 5, pp. 1897-1920. doi : 10.5802/aif.2976. https://aif.centre-mersenne.org/articles/10.5802/aif.2976/

[1] Berthier, M.; Cerveau, D.; Meziani, R. Transformations isotropes des germes de feuilletages holomorphes, J. Math. Pures Appl. (9), Volume 78 (1999) no. 7, pp. 701-722 | DOI | Zbl

[2] Camacho, César; Sad, Paulo Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2), Volume 115 (1982) no. 3, pp. 579-595 | DOI | Zbl

[3] Cano, Felipe; Corral, Nuria Absolutely dicritical foliations, Int. Math. Res. Not. IMRN (2011) no. 8, pp. 1926-1934 | DOI | Zbl

[4] Cerveau, D.; Moussu, R. Groupes d’automorphismes de (C,0) et équations différentielles ydy+=0, Bull. Soc. Math. France, Volume 116 (1988) no. 4, p. 459-488 (1989) | Numdam | Zbl

[5] Genzmer, Yohann Analytical and formal classifications of quasi-homogeneous foliations in ( 2 ,0), J. Differential Equations, Volume 245 (2008) no. 6, pp. 1656-1680 | DOI | Zbl

[6] Genzmer, Yohann; Paul, Emmanuel Moduli spaces for topologically quasi-homogeneous functions (http://hal.archives-ouvertes.fr/hal-00749661)

[7] Genzmer, Yohann; Paul, Emmanuel Normal forms of foliations and curves defined by a function with a generic tangent cone, Mosc. Math. J., Volume 11 (2011) no. 1, p. 41-72, 181 | Zbl

[8] Mattei, J.-F. Modules de feuilletages holomorphes singuliers. I. Équisingularité, Invent. Math., Volume 103 (1991) no. 2, pp. 297-325 | DOI | Zbl

[9] Mattei, J.-F.; Moussu, R. Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4), Volume 13 (1980) no. 4, pp. 469-523 | Numdam | Zbl

[10] Mattei, Jean-François Quasi-homogénéité et équiréductibilité de feuilletages holomorphes en dimension deux, Astérisque (2000) no. 261, pp. xix, 253-276 Géométrie complexe et systèmes dynamiques (Orsay, 1995) | Zbl

[11] Moussu, Robert Holonomie évenescente des équations différentielles dégénerées transverses, Singularities and dynamical systems (Iráklion, 1983) (North-Holland Math. Stud.), Volume 103, North-Holland, Amsterdam, 1985, pp. 161-173 | DOI | Zbl

[12] Seidenberg, A. Reduction of singularities of the differential equation Ady=Bdx, Amer. J. Math., Volume 90 (1968), pp. 248-269 | Zbl

[13] Voronin, S. M.; Ortis-Bobadilla, L.; Rosales-Gonsales, È. Thom’s problem for the orbital analytic classification of degenerate singular points of holomorphic vector fields on the plane, Dokl. Akad. Nauk, Volume 434 (2010) no. 4, pp. 443-446 | DOI | Zbl

[14] Żołpolhk adek, Henryk The monodromy group, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], 67, Birkhäuser Verlag, Basel, 2006, pp. xii+580

Cité par Sources :