Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques
[Completeness of certain pseudo-Riemannian (locally) symmetric spaces]
Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 1921-1952.

We prove that certain pseudo-Riemannian symmetric spaces do not admit a proper domain which is divisible by the action of a discrete group of isometries. In other words, if a closed pseudo-Riemannian manifold is locally isometric to such a model, and if its developing map is injective, then the manifold is actually geodesically complete, and therefore isometric to a quotient of the whole model space. Those results extend, under an additional assumption (the injectivity of the developing map), the theorems of Carrière and Klingler stating that closed Lorentz manifolds of constant curvature are geodesically complete.

Nous prouvons que certains espaces pseudo-riemanniens symétriques n’admettent pas d’ouvert strict divisible par l’action d’un groupe discret d’isométries. Autrement dit, si une variété pseudo-riemannienne compacte est localement isométrique à un tel espace, et si son application développante est injective, alors la variété est géodésiquement complète, et donc isométrique à un quotient de l’espace modèle tout entier. Ces résultats étendent, sous une hypothèse supplémentaire (l’injectivité de l’application développante), les théorèmes de Carrière et Klingler selon lesquels les variétés lorentziennes compactes de courbure constante sont géodésiquement complètes.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.2977
Classification: 53C50,  53C35,  22E40
Keywords: Pseudo-Riemannian manifold, (G,X)–structure, properly discontinuous action
@article{AIF_2015__65_5_1921_0,
     author = {Tholozan, Nicolas},
     title = {Sur la compl\'etude de certaines vari\'et\'es pseudo-riemanniennes localement sym\'etriques},
     journal = {Annales de l'Institut Fourier},
     pages = {1921--1952},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {5},
     year = {2015},
     doi = {10.5802/aif.2977},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2977/}
}
TY  - JOUR
TI  - Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 1921
EP  - 1952
VL  - 65
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2977/
UR  - https://doi.org/10.5802/aif.2977
DO  - 10.5802/aif.2977
LA  - fr
ID  - AIF_2015__65_5_1921_0
ER  - 
%0 Journal Article
%T Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques
%J Annales de l'Institut Fourier
%D 2015
%P 1921-1952
%V 65
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2977
%R 10.5802/aif.2977
%G fr
%F AIF_2015__65_5_1921_0
Tholozan, Nicolas. Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques. Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 1921-1952. doi : 10.5802/aif.2977. https://aif.centre-mersenne.org/articles/10.5802/aif.2977/

[1] Benoist, Yves Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math., Tome 164 (2006) no. 2, pp. 249-278 | Article | Zbl: 1107.22006

[2] Borel, Armand Compact Clifford-Klein forms of symmetric spaces, Topology, Tome 2 (1963), pp. 111-122 | Zbl: 0116.38603

[3] Borel, Armand; Tits, Jacques Groupes réductifs, Publ. Math. Inst. Hautes Études Sci., Tome 27 (1965), pp. 55-150 | Numdam | Zbl: 0145.17402

[4] Carrière, Yves Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., Tome 95 (1989) no. 3, pp. 615-628 | Article | Zbl: 0682.53051

[5] Dumitrescu, Sorin; Zeghib, Abdelghani Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, Math. Ann., Tome 345 (2009) no. 1, pp. 53-81 | Article | Zbl: 1172.53048

[6] Ehresmann, Charles Sur les Espaces localement homogènes, Enseign. Math., Tome 35 (1936), pp. 317-333 | Zbl: 0015.39404

[7] Frances, Charles Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 5, pp. 741-764 | Article | Numdam | Zbl: 1135.53016

[8] Fried, David; Goldman, William; Hirsch, Morris W. Affine manifolds with nilpotent holonomy, Comment. Math. Helv., Tome 56 (1981) no. 4, pp. 487-523 | Article | Zbl: 0516.57014

[9] Gallo, Daniel; Kapovich, Michael; Marden, Albert The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. (2), Tome 151 (2000) no. 2, pp. 625-704 | Article | Zbl: 0977.30028

[10] Ghys, Étienne Déformations des structures complexes sur les espaces homogènes de SL (2,), J. Reine Angew. Math., Tome 468 (1995), pp. 113-138 | Article | Zbl: 0868.32023

[11] Goldman, William; Hirsch, Morris W. The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc., Tome 286 (1984) no. 2, pp. 629-649 | Article | Zbl: 0561.57014

[12] Goldman, William M. Nonstandard Lorentz space forms, J. Differential Geom., Tome 21 (1985) no. 2, pp. 301-308 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439567 | Zbl: 0591.53051

[13] Goldman, William M. Locally homogeneous geometric manifolds, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 717-744 | Zbl: 1234.57001

[14] Gromov, Michael Rigid transformation groups, Géométrie différentielle (Paris, 1986) (Travaux en Cours) Tome 33, Hermann, Paris, 1988, pp. 65-139 | Zbl: 0652.53023

[15] Guediri, Mohammed; Lafontaine, Jacques Sur la complétude des variétés pseudo-riemanniennes, J. Geom. Phys., Tome 15 (1995) no. 2, pp. 150-158 | Article | Zbl: 0818.53083

[16] Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna Anosov representations and proper actions (http://arxiv.org/abs/1502.03811)

[17] Guéritaud, François; Kassel, Fanny Maximally stretched laminations on geometrically finite hyperbolic manifolds (http://arxiv.org/abs/1307.0250, à paraître à Geometry & Topology)

[18] Jo, Kyeonghee; Kim, Inkang Convex affine domains and Markus conjecture, Math. Z., Tome 248 (2004) no. 1, pp. 173-182 | Article | Zbl: 1061.52006

[19] Kassel, Fanny Proper actions on corank-one reductive homogeneous spaces, J. Lie Theory, Tome 18 (2008) no. 4, pp. 961-978 | Zbl: 1173.22009

[20] Kassel, Fanny Quotients compacts d’espaces homogènes réels ou p-adiques (2009) (Ph. D. Thesis)

[21] Klingler, Bruno Complétude des variétés lorentziennes à courbure constante, Math. Ann., Tome 306 (1996) no. 2, pp. 353-370 | Article | Zbl: 0862.53048

[22] Knapp, Anthony W. Lie groups beyond an introduction, Progress in Mathematics, Tome 140, Birkhäuser Boston Inc., Boston, MA, 2002, xviii+812 pages | Zbl: 1075.22501

[23] Kobayashi, Toshiyuki On discontinuous groups acting on homogeneous spaces with noncompact isotropy subgroups, J. Geom. Phys., Tome 12 (1993) no. 2, pp. 133-144 | Article | Zbl: 0815.57029

[24] Kobayashi, Toshiyuki Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann., Tome 310 (1998), pp. 394-408 | Zbl: 0891.22014

[25] Kulkarni, Ravi S.; Pinkall, Ulrich Uniformization of geometric structures with applications to conformal geometry, Differential geometry, Peñíscola 1985 (Lecture Notes in Math.) Tome 1209, Springer, Berlin, 1986, pp. 190-209 | Article | Zbl: 0612.57017

[26] Kulkarni, Ravi S.; Raymond, Frank 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom., Tome 21 (1985) no. 2, pp. 231-268 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439564 | Zbl: 0563.57004

[27] Markus, Lawrence Cosmological models in differential geometry, University of Minnesota Press, 1963

[28] Salein, François Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 1, pp. 257-284 | Numdam | Zbl: 0951.53047

[29] Smillie, John David Affinely flat manifolds, ProQuest LLC, Ann Arbor, MI, 1977 (PhD Thesis–University of Chicago)

[30] Thurston, William The Geometry and topology of 3-manifolds, Princeton University Press, 1980

[31] Wolf, Joseph A. Spaces of constant curvature, Publish or Perish Inc., Boston, Mass., 1974, xv+408 pages | Zbl: 0281.53034

[32] Zeghib, Abdelghani On closed anti-de Sitter spacetimes, Math. Ann., Tome 310 (1998) no. 4, pp. 695-716 | Zbl: 0968.53049

Cited by Sources: