We study the billiard on a square billiard table with a one-sided vertical mirror. We associate trajectories of these billiards with double rotations and study orbit behavior and questions of complexity.
Nous étudions le billard sur une table carrée avec un miroir vertical à une face. Nous associons les trajectoires de ces billards à des doubles rotations et étudions le comportement des orbites et des questions de complexité.
Revised:
Accepted:
Published online:
Classification: 37C35, 03B10, 68R15
Keywords: Polygonal billiard, interval translation mapping, spy mirror, complexity
@article{AIF_2015__65_5_1881_0, author = {Skripchenko, Alexandra and Troubetzkoy, Serge}, title = {Polygonal {Billiards} with {One} {Sided} {Scattering}}, journal = {Annales de l'Institut Fourier}, pages = {1881--1896}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {5}, year = {2015}, doi = {10.5802/aif.2975}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2975/} }
TY - JOUR TI - Polygonal Billiards with One Sided Scattering JO - Annales de l'Institut Fourier PY - 2015 DA - 2015/// SP - 1881 EP - 1896 VL - 65 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2975/ UR - https://doi.org/10.5802/aif.2975 DO - 10.5802/aif.2975 LA - en ID - AIF_2015__65_5_1881_0 ER -
Skripchenko, Alexandra; Troubetzkoy, Serge. Polygonal Billiards with One Sided Scattering. Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 1881-1896. doi : 10.5802/aif.2975. https://aif.centre-mersenne.org/articles/10.5802/aif.2975/
[1] A polynomial bound for the lap number, Qual. Theory Dyn. Syst., Tome 3 (2002) no. 2, pp. 325-329 | Article | Zbl: 1057.37035
[2] Interval translation mappings, Ergodic Theory Dynam. Systems, Tome 15 (1995) no. 5, pp. 821-832 | Article | Zbl: 0836.58026
[3] Renormalization in a class of interval translation maps of branches, Dyn. Syst., Tome 22 (2007) no. 1, pp. 11-24 | Article | Zbl: 1115.37038
[4] The Gauss map on a class of interval translation mappings, Israel J. Math., Tome 137 (2003), pp. 125-148 | Article | Zbl: 1274.37005
[5] Inducing and unique ergodicity of double rotations, Discrete Contin. Dyn. Syst., Tome 32 (2012) no. 12, pp. 4133-4147 | Article | Zbl: 1263.37020
[6] Piecewise monotone maps without periodic points: rigidity, measures and complexity, Ergodic Theory Dynam. Systems, Tome 24 (2004) no. 2, pp. 383-405 | Article | Zbl: 1076.37022
[7] Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble), Tome 52 (2002) no. 3, pp. 835-847 http://aif.cedram.org/item?id=AIF_2002__52_3_835_0 | Zbl: 1115.37312
[8] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Tome 4 (1997) no. 1, pp. 67-88 http://projecteuclid.org/euclid.bbms/1105730624 (Journées Montoises (Mons, 1994)) | Zbl: 0921.68065
[9] Infinite words with uniform frequencies, and invariant measures, Combinatorics, automata and number theory (Encyclopedia Math. Appl.) Tome 135, Cambridge Univ. Press, Cambridge, 2010, pp. 373-409 | Zbl: 1217.68168
[10] Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | Article | Zbl: 1057.37034
[11] Interval translation mappings, Dynamical systems (Luminy-Marseille, 1998), World Sci. Publ., River Edge, NJ, 2000, pp. 291-302 | Zbl: 1196.37072
[12] Double rotations, Discrete Contin. Dyn. Syst., Tome 13 (2005) no. 2, pp. 515-532 | Article | Zbl: 1078.37033
Cited by Sources: