We provide a formula for the symplectic period of an Eisenstein series on and determine when it is not identically zero.
On donne une formule pour la période symplectique d’une série d’Eisenstein pour le groupe et on détermine sous quelles conditions celle-ci n’est pas identiquement nulle.
Keywords: symplectic periods, intertwining periods, continuous spectrum
Mot clés : périodes symplectiques, périodes d’entrelacement, spectre continu
Yamana, Shunsuke 1
@article{AIF_2014__64_4_1561_0, author = {Yamana, Shunsuke}, title = {Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$}, journal = {Annales de l'Institut Fourier}, pages = {1561--1580}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {4}, year = {2014}, doi = {10.5802/aif.2890}, mrnumber = {3329673}, zbl = {06387317}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2890/} }
TY - JOUR AU - Yamana, Shunsuke TI - Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$ JO - Annales de l'Institut Fourier PY - 2014 SP - 1561 EP - 1580 VL - 64 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2890/ DO - 10.5802/aif.2890 LA - en ID - AIF_2014__64_4_1561_0 ER -
%0 Journal Article %A Yamana, Shunsuke %T Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$ %J Annales de l'Institut Fourier %D 2014 %P 1561-1580 %V 64 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2890/ %R 10.5802/aif.2890 %G en %F AIF_2014__64_4_1561_0
Yamana, Shunsuke. Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1561-1580. doi : 10.5802/aif.2890. https://aif.centre-mersenne.org/articles/10.5802/aif.2890/
[1] On the inner product of truncated Eisenstein series, Duke Math. J., Volume 49 (1982), pp. 35-70 | DOI | MR | Zbl
[2] -invariant distributions on and the classification of unitary representations of (non-archimedean case), Lie Group Representations II (Lec. Notes in Math.), Volume 1041, Springer, 1984, pp. 50-102 | MR
[3] A spectral identity for skew symmetric matrices, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, 2004, pp. 421-455 | MR | Zbl
[4] Periods of automorphic forms, J. Am. Math. Soc., Volume 12 (1999), pp. 173-240 | DOI | MR | Zbl
[5] Rankin-Selberg Convolutions, Am. J. Math., Volume 105 (1983), pp. 367-464 | DOI | MR | Zbl
[6] Symplectic periods, J. Reine Angew. Math., Volume 423 (1992), pp. 175-197 | MR | Zbl
[7] Periods of Eisenstein series: the Galois case, Duke Math. J., Volume 120 (2003) no. 1, pp. 153-226 | DOI | MR | Zbl
[8] Le spectre résiduel de , Ann. Sci. École Norm. Sup. (4), Volume 22 (1989), pp. 605-674 | Numdam | MR | Zbl
[9] Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, 113, Cambridge University Press, 1995 | MR | Zbl
[10] On symplectic periods of discrete spectrum of , Israel J. Math., Volume 154 (2006), pp. 253-298 | DOI | MR | Zbl
[11] Residual spectrum of distinguished by the symplectic group, Duke Math. J., Volume 134 (2006) no. 2, pp. 313-357 | DOI | MR | Zbl
[12] On unitary representations of distinguished by the symplectic group, J. Number Theory, Volume 125 (2007), pp. 344-355 | DOI | MR | Zbl
[13] The unitary dual of over an Archimedean field, Invent. Math., Volume 83 (1986), pp. 449-505 | DOI | MR | Zbl
Cited by Sources: