Higher symmetries of the Laplacian via quantization
Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1581-1609.

We develop a new approach, based on quantization methods, to study higher symmetries of invariant differential operators. We focus here on conformally invariant powers of the Laplacian over a conformally flat manifold and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, conformally equivariant quantization establishes a correspondence between the algebra of Hamiltonian symmetries of the null geodesic flow and the algebra of higher symmetries of the conformal Laplacian. Combined with a symplectic reduction, this leads to a quantization of the minimal nilpotent coadjoint orbit of the conformal group. The star-deformation of its algebra of regular functions is isomorphic to the algebra of higher symmetries of the conformal Laplacian. Both identify with the quotient of the universal envelopping algebra by the Joseph ideal.

Nous développons une nouvelle approche, basée sur des méthodes de quantification, pour étudier les symétries supérieures d’opérateurs différentiels invariants. Nous traitons ici le cas des puissances conformes du laplacien sur une variété conformément plate et retrouvons les résultats de Eastwood, Leistner, Gover et Šilhan. En particulier, la quantifciation conformément équivariante établit une correspondence entre l’algèbre des symétries hamiltoniennes du flot géodésique nul et l’algèbre des symétries supérieures du laplacien conforme. Via une réduction symplectique, ceci conduit à une quantification de l’orbite nilpotente minimale du groupe conforme. La star-déformation de son algèbre de fonctions régulières est isomorphe à l’algèbre des symétries supérieures du laplacien conforme. Les deux s’identifient au quotient de l’algèbre enveloppante de l’algèbre de Lie conforme par l’idéal de Joseph.

DOI: 10.5802/aif.2891
Classification: 58J10, 53A30, 70S10, 17B08, 53D20, 53D55
Keywords: Symmetry algebra, Laplacian, Quantization, Conformal geometry, Minimal nilpotent orbit, Symplectic reduction.
Mot clés : algèbre de symétries, laplacien, quantification, géometrie conforme, orbite nilpotente minimale, réduction symplectique.

Michel, Jean-Philippe 1, 2

1 University of Liège, Sart-Tilman, 12 grande traverse, B-4000 Liège, Belgium
2 University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Grand Duchy of Luxembourg
@article{AIF_2014__64_4_1581_0,
     author = {Michel, Jean-Philippe},
     title = {Higher symmetries of the {Laplacian} via~quantization},
     journal = {Annales de l'Institut Fourier},
     pages = {1581--1609},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {4},
     year = {2014},
     doi = {10.5802/aif.2891},
     mrnumber = {3329674},
     zbl = {06387318},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2891/}
}
TY  - JOUR
AU  - Michel, Jean-Philippe
TI  - Higher symmetries of the Laplacian via quantization
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 1581
EP  - 1609
VL  - 64
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2891/
DO  - 10.5802/aif.2891
LA  - en
ID  - AIF_2014__64_4_1581_0
ER  - 
%0 Journal Article
%A Michel, Jean-Philippe
%T Higher symmetries of the Laplacian via quantization
%J Annales de l'Institut Fourier
%D 2014
%P 1581-1609
%V 64
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2891/
%R 10.5802/aif.2891
%G en
%F AIF_2014__64_4_1581_0
Michel, Jean-Philippe. Higher symmetries of the Laplacian via quantization. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1581-1609. doi : 10.5802/aif.2891. https://aif.centre-mersenne.org/articles/10.5802/aif.2891/

[1] Arnal, D.; Benamor, H.; Cahen, B. Algebraic deformation program on minimal nilpotent orbit, Lett. Math. Phys., Volume 30 (1994) no. 3, pp. 241-250 | MR | Zbl

[2] Astashkevich, A.; Brylinski, R. Non-local equivariant star product on the minimal nilpotent orbit, Adv. Math., Volume 171 (2002) no. 1, pp. 86-102 | DOI | MR | Zbl

[3] Balleier, C.; Wurzbacher, T. On the geometry and quantization of symplectic Howe pairs, Math. Zeit., Volume 271 (2012), pp. 577-591 | DOI | MR | Zbl

[4] Bekaert, X.; Grigoriev, M. Manifestly conformal descriptions and higher symmetries of bosonic singletons, SIGMA, Volume 6 (2010) (Paper 038) | MR | Zbl

[5] Bekaert, Xavier; Meunier, Elisa; Moroz, Sergej Symmetries and currents of the ideal and unitary fermi gases, JHEP, Volume 2012 (2012) no. 2 (Article:113) | DOI

[6] Binegar, B.; Zierau, R. Unitarization of a singular representation of SO (p,q), Comm. Math. Phys., Volume 138 (1991) no. 2, pp. 245-258 | DOI | MR | Zbl

[7] Boe, B. D.; Collingwood, D. H. A comparison theory for the structure of induced representations, J. Algebra, Volume 94 (1985) no. 2, pp. 511-545 | DOI | MR | Zbl

[8] Boe, B. D.; Collingwood, D. H. A comparison theory for the structure of induced representations. II, Math. Z., Volume 190 (1985) no. 1, pp. 1-11 | DOI | MR | Zbl

[9] Boniver, F.; Mathonet, P. IFFT-equivariant quantizations, J. Geom. Phys., Volume 56 (2006) no. 4, pp. 712-730 | DOI | MR | Zbl

[10] Boyer, C. P.; Kalnins, E. G.; Miller, Jr., W. Symmetry and separation of variables for the Helmholtz and Laplace equations, Nagoya Math. J., Volume 60 (1976), pp. 35-80 | MR | Zbl

[11] Calderbank, David M. J.; Diemer, Tammo Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math., Volume 537 (2001), pp. 67-103 | MR | Zbl

[12] Čap, A.; Šilhan, J. Equivariant quantizations for AHS-structures, Adv. Math., Volume 224 (2010) no. 4, pp. 1717-1734 | DOI | MR | Zbl

[13] Cordani, Bruno Conformal regularization of the Kepler problem, Comm. Math. Phys., Volume 103 (1986) no. 3, pp. 403-413 | DOI | MR | Zbl

[14] Dairbekov, N.; Sharafutdinov, V. On conformal killing symmetric tensor fields on Riemannian manifolds, Sib. Adv. Math., Volume 21 (2011), pp. 1-41 | DOI | MR | Zbl

[15] Dixmier, Jacques Algèbres enveloppantes, Gauthiers-Villars, Paris, 1974 | MR | Zbl

[16] Duval, C.; El Gradechi, A. M.; Yu. Ovsienko, V. Projectively and conformally invariant star-products, Comm. Math. Phys., Volume 244 (2004) no. 1, pp. 3-27 | DOI | MR | Zbl

[17] Duval, C.; Lecomte, P. B. A.; Yu. Ovsienko, V. Conformally equivariant quantization: existence and uniqueness, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 6, pp. 1999-2029 | DOI | Numdam | MR | Zbl

[18] Duval, C.; Yu. Ovsienko, V. Conformally equivariant quantum Hamiltonians, Selecta Math. (N.S.), Volume 7 (2001) no. 3, pp. 291-320 | DOI | MR | Zbl

[19] Eastwood, M. G. Higher symmetries of the Laplacian, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1645-1665 | DOI | MR | Zbl

[20] Eastwood, M. G.; Leistner, T. Higher symmetries of the square of the Laplacian, Symmetries and overdetermined systems of partial differential equations (IMA Vol. Math. Appl.), Volume 144, Springer, New York, 2008, pp. 319-338 | MR | Zbl

[21] Eastwood, M. G.; Rice, J. W. Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys., Volume 109 (1987) no. 2, pp. 207-228 Erratum Comm. Math. Phys., 144 (1992) no. 2, p. 213. | DOI | MR | Zbl

[22] Eastwood, M. G.; Somberg, P.; Souček, V. Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras, J. Geom. Phys., Volume 57 (2007) no. 12, pp. 2539-2546 | DOI | MR | Zbl

[23] Fioresi, R.; Lledó, M. A. On the deformation quantization of coadjoint orbits of semisimple groups, Pacific J. Math., Volume 198 (2001) no. 2, pp. 411-436 | DOI | MR | Zbl

[24] Gover, A. R.; Peterson, L. J. Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Comm. Math. Phys., Volume 235 (2003) no. 2, pp. 339-378 | DOI | MR | Zbl

[25] Gover, A. R.; Šilhan, J. Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds, J. Math Phys., Volume 53 (2012) no. 3 (Article 032301) | DOI | MR | Zbl

[26] Howe, R. Remarks on classical invariant theory, Trans. Amer. Math. Soc., Volume 313 (1989) no. 2, pp. 539-570 Erratum Trans. Amer. Math. Soc., 318 (1990) no. 2, p. 823 | DOI | MR | Zbl

[27] Joseph, A. The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4), Volume 9 (1976) no. 1, pp. 1-29 | Numdam | MR | Zbl

[28] Kobayashi, T.; Ørsted, B. Analysis on the minimal representation of O(p,q). I. Realization via conformal geometry, Adv. Math., Volume 180 (2003) no. 2, pp. 486-512 | DOI | MR | Zbl

[29] Kobayashi, T.; Ørsted, B. Analysis on the minimal representation of O(p,q). III. Ultrahyperbolic equations on p-1,q-1 , Adv. Math., Volume 180 (2003) no. 2, pp. 551-595 | DOI | MR | Zbl

[30] Lecomte, P. B. A.; Yu. Ovsienko, V. Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold, Compositio Math., Volume 124 (2000) no. 1, pp. 95-110 | DOI | MR | Zbl

[31] Lepowsky, J. A generalization of the Bernstein–Gelfand–Gelfand resolution, J. Algebra, Volume 49 (1977), pp. 496-511 | DOI | MR | Zbl

[32] Loubon Djounga, S. E. Conformally invariant quantization at order three, Lett. Math. Phys., Volume 64 (2003) no. 3, pp. 203-212 | DOI | MR | Zbl

[33] Michel, J.-Ph. Conformally equivariant quantization–a complete classification, SIGMA, Volume 8 (2012), pp. 20 pp (paper 022) | MR | Zbl

[34] Michel, J.-Ph.; Radoux, F.; Šilhan, J. Second order symmetries of the conformal Laplacian, SIGMA, Volume 10 (2014) (Article 016) | MR | Zbl

[35] Nikitin, A. G.; Prilipko, A. I. Generalized Killing tensors and the symmetry of the Klein-Gordon-Fock equation, 1990 | MR | Zbl

[36] Ortega, J.-P.; Ratiu, T.S. Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser, Basel, 2004 | MR | Zbl

[37] Radoux, F. An explicit formula for the natural and conformally invariant quantization, Lett. Math. Phys., Volume 89 (2009) no. 3, pp. 249-263 | DOI | MR | Zbl

[38] Šilhan, J. Conformally invariant quantization - towards complete classification, Differ. geom. appl., Volume 33, Supplement(0) (2014), pp. 162-174 (The Interaction of Geometry and Representation Theory. Exploring new frontiers) | DOI | MR | Zbl

[39] Somberg, P. Deformations of quadratic algebras, the Joseph ideal for classical Lie algebras, and special tensors, Symmetries and overdetermined systems of partial differential equations (IMA Vol. Math. Appl.), Volume 144, Springer, New York, 2008, pp. 527-536 | MR | Zbl

[40] Vlasáková, Z. Symmetries of CR sub-Laplacian, 2012 (arXiv:1201.6219)

[41] Weyl, H. The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997 (Their invariants and representations, Fifteenth printing, Princeton Paperbacks) | MR

[42] Wolf, J. A. Representations associated to minimal co-adjoint orbits, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) (Lecture Notes in Math.), Volume 676, Springer, Berlin, 1978, pp. 329-349 | MR | Zbl

[43] Wünsch, V. On conformally invariant differential operators, Math. Nachr., Volume 129 (1986), pp. 269-281 | DOI | MR | Zbl

Cited by Sources: