Universal Taylor series, conformal mappings and boundary behaviour
Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 327-339.

A holomorphic function f on a simply connected domain Ω is said to possess a universal Taylor series about a point in Ω if the partial sums of that series approximate arbitrary polynomials on arbitrary compacta K outside Ω (provided only that K has connected complement). This paper shows that this property is not conformally invariant, and, in the case where Ω is the unit disc, that such functions have extreme angular boundary behaviour.

On dit qu’une fonction f, qui est holomorphe sur un domaine simplement connexe Ω, possède une série universelle de Taylor autour d’un point de Ω si tout polynôme sur tout compact K en-dehors de Ω peut être approximé par des sommes partielles de cette série (pourvu que le complémentaire de K soit connexe). Cet article montre que cette propriété n’est pas invariante par transformation conforme et, dans le cas où Ω est le disque unité, que ces fonctions ont un comportement extrême dans le sens des limites angulaires.

DOI: 10.5802/aif.2849
Classification: 30K05, 30B30, 30E10, 31A05
Keywords: Universal Taylor series, conformal mappings, angular boundary behaviour.
Mot clés : Séries de Taylor universelles, transformations conformes, comportement angulaire à la frontière.

Gardiner, Stephen J. 1

1 School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
@article{AIF_2014__64_1_327_0,
     author = {Gardiner, Stephen J.},
     title = {Universal {Taylor} series, conformal mappings and boundary behaviour},
     journal = {Annales de l'Institut Fourier},
     pages = {327--339},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.5802/aif.2849},
     mrnumber = {3330551},
     zbl = {06387276},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2849/}
}
TY  - JOUR
AU  - Gardiner, Stephen J.
TI  - Universal Taylor series, conformal mappings and boundary behaviour
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 327
EP  - 339
VL  - 64
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2849/
DO  - 10.5802/aif.2849
LA  - en
ID  - AIF_2014__64_1_327_0
ER  - 
%0 Journal Article
%A Gardiner, Stephen J.
%T Universal Taylor series, conformal mappings and boundary behaviour
%J Annales de l'Institut Fourier
%D 2014
%P 327-339
%V 64
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2849/
%R 10.5802/aif.2849
%G en
%F AIF_2014__64_1_327_0
Gardiner, Stephen J. Universal Taylor series, conformal mappings and boundary behaviour. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 327-339. doi : 10.5802/aif.2849. https://aif.centre-mersenne.org/articles/10.5802/aif.2849/

[1] Armitage, D. H.; Costakis, G. Boundary behavior of universal Taylor series and their derivatives, Constr. Approx., Volume 24 (2006), pp. 1-15 | DOI | MR | Zbl

[2] Armitage, D. H.; Gardiner, S. J. Classical Potential Theory, Springer, London, 2001 | MR | Zbl

[3] Barth, K. F.; Rippon, P. J. Extensions of a theorem of Valiron, Bull. London Math. Soc., Volume 38 (2006), pp. 815-824 | DOI | MR | Zbl

[4] Bayart, F. Boundary behavior and Cesàro means of universal Taylor series, Rev. Mat. Complut., Volume 19 (2006), pp. 235-247 | DOI | MR | Zbl

[5] Bernal-González, L.; Bonilla, A.; Calderón-Moreno, M. C.and; Prado-Bassas, J. A. Universal Taylor series with maximal cluster sets, Rev. Mat. Iberoam., Volume 25 (2009), pp. 757-780 | DOI | MR | Zbl

[6] Brelot, M.; Doob, J. L. Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble), Volume 13 (1963) no. 2, pp. 395-415 | DOI | Numdam | MR | Zbl

[7] Costakis, G. On the radial behavior of universal Taylor series, Monatsh. Math., Volume 145 (2005), pp. 11-17 | DOI | MR | Zbl

[8] Costakis, G. Which maps preserve universal functions?, Oberwolfach Rep., Volume 6 (2008), pp. 328-331

[9] Costakis, G.; Melas, A. On the range of universal functions, Bull. London Math. Soc., Volume 32 (2000), pp. 458-464 | DOI | MR | Zbl

[10] Doob, J. L. Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984 | MR | Zbl

[11] Gardiner, S. J. Boundary behaviour of functions which possess universal Taylor series (Bull. London Math. Soc., to appear) | MR | Zbl

[12] Lelong-Ferrand, J. Étude au voisinage de la frontière des fonctions subharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup. (3), Volume 66 (1949), pp. 125-159 | Numdam | MR | Zbl

[13] Melas, A. On the growth of universal functions, J. Anal. Math., Volume 82 (2000), pp. 1-20 | DOI | MR | Zbl

[14] Melas, A.; Nestoridis, V. Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., Volume 157 (2001), pp. 138-176 | DOI | MR | Zbl

[15] Melas, A.; Nestoridis, V.; Papadoperakis, I. Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Anal. Math., Volume 73 (1997), pp. 187-202 | DOI | MR | Zbl

[16] Müller, J.; Vlachou, V.; Yavrian, A. Universal overconvergence and Ostrowski-gaps, Bull. London Math. Soc., Volume 38 (2006), pp. 597-606 | DOI | MR | Zbl

[17] Nestoridis, V. Universal Taylor series, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 1293-1306 | DOI | Numdam | MR | Zbl

[18] Nestoridis, V. An extension of the notion of universal Taylor series, Computational methods and function theory 1997 (Nicosia) (Ser. Approx. Decompos.), Volume 11, World Sci. Publ., River Edge, NJ, 1999, pp. 421-430 | MR | Zbl

[19] Pommerenke, C. Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992 | MR | Zbl

[20] Ransford, T. Potential Theory in the Complex Plane, Cambridge Univ. Press, 1995 | MR | Zbl

Cited by Sources: