A classification theorem on Fano bundles
Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 341-373.

In this paper we classify rank two Fano bundles on Fano manifolds satisfying H 2 (X,)H 4 (X,). The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization (), that allows us to obtain the cohomological invariants of X and . As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.

Dans cet article, on classifie les fibrés de Fano de rang deux sur les variétés de Fano satisfaisant H 2 (X,)H 4 (X,). La classification est obtenue par le calcul des cônes nef et pseudoeffectif de la projectivation (), ce qui nous permet d’obtenir des invariants cohomologiques de X et . Comme un sous-produit, nous discutons des fibrés associés à Fano congruences de droites, montrant que leurs variétés de tangentes rationnelles minimales peuvent avoir plusieurs composants linéaires.

Received:
Accepted:
DOI: 10.5802/aif.2850
Classification: 14M15,  14E30,  14J45
Keywords: vector bundles, Fano manifolds
@article{AIF_2014__64_1_341_0,
     author = {Mu\~noz, Roberto and Sol\'a Conde, Luis E. and Occhetta, Gianluca},
     title = {A classification theorem on {Fano} bundles},
     journal = {Annales de l'Institut Fourier},
     pages = {341--373},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.5802/aif.2850},
     zbl = {06387277},
     mrnumber = {3330489},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2850/}
}
TY  - JOUR
TI  - A classification theorem on Fano bundles
JO  - Annales de l'Institut Fourier
PY  - 2014
DA  - 2014///
SP  - 341
EP  - 373
VL  - 64
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2850/
UR  - https://zbmath.org/?q=an%3A06387277
UR  - https://www.ams.org/mathscinet-getitem?mr=3330489
UR  - https://doi.org/10.5802/aif.2850
DO  - 10.5802/aif.2850
LA  - en
ID  - AIF_2014__64_1_341_0
ER  - 
%0 Journal Article
%T A classification theorem on Fano bundles
%J Annales de l'Institut Fourier
%D 2014
%P 341-373
%V 64
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2850
%R 10.5802/aif.2850
%G en
%F AIF_2014__64_1_341_0
Muñoz, Roberto; Solá Conde, Luis E.; Occhetta, Gianluca. A classification theorem on Fano bundles. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 341-373. doi : 10.5802/aif.2850. https://aif.centre-mersenne.org/articles/10.5802/aif.2850/

[1] Ancona, V.; Peternell, T.; Wiśniewski, J. A. Fano bundles and splitting theorems on projective spaces and quadrics, Pacific J. Math., Tome 163 (1994) no. 1, pp. 17-42 http://projecteuclid.org/getRecord?id=euclid.pjm/1102622627 | Article | MR: 1256175 | Zbl: 0808.14013

[2] Andreatta, M.; Ballico, E.; Wiśniewski, J. A. Two theorems on elementary contractions, Math. Ann., Tome 297 (1993) no. 2, pp. 191-198 | Article | MR: 1241801 | Zbl: 0789.14011

[3] Bazan, D.; Mezzetti, E. On the construction of some Buchsbaum varieties and the Hilbert scheme of elliptic scrolls in 5 , Geom. Dedicata, Tome 86 (2001) no. 1-3, pp. 191-204 | Article | MR: 1856426 | Zbl: 1042.14022

[4] Campana, F.; Peternell, T. Projective manifolds whose tangent bundles are numerically effective, Math. Ann., Tome 289 (1991) no. 1, pp. 169-187 | Article | MR: 1087244 | Zbl: 0729.14032

[5] Cheltsov, I. A. Conic bundles with big discriminant loci, Izv. Ross. Akad. Nauk Ser. Mat., Tome 68 (2004) no. 2, pp. 215-221 | Article | MR: 2058006 | Zbl: 1078.14014

[6] Cornalba, M. A remark on the topology of cyclic coverings of algebraic varieties, Boll. Un. Mat. Ital. A (5), Tome 18 (1981) no. 2, pp. 323-328 | MR: 618353 | Zbl: 0462.14007

[7] De Poi, P. Threefolds in 5 with one apparent quadruple point, Comm. Algebra, Tome 31 (2003) no. 4, pp. 1927-1947 | Article | MR: 1972898 | Zbl: 1018.14015

[8] Ein, L.; Shepherd-Barron, N. Some special Cremona transformations, Amer. J. Math., Tome 111 (1989) no. 5, pp. 783-800 | Article | MR: 1020829 | Zbl: 0708.14009

[9] Fujita, T. Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, Tome 155, Cambridge University Press, Cambridge, 1990 | Article | MR: 1162108 | Zbl: 0743.14004

[10] Griffiths, P.; Harris, J. Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978, xii+813 pages | MR: 507725 | Zbl: 0836.14001

[11] Hulek, K. Stable rank-2 vector bundles on 2 with c 1 odd, Math. Ann., Tome 242 (1979) no. 3, pp. 241-266 | Article | EuDML: 163285 | MR: 545217 | Zbl: 0407.32013

[12] Hwang, J.-M. Geometry of minimal rational curves on Fano manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) (ICTP Lect. Notes) Tome 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 335-393 | MR: 1919462 | Zbl: 1086.14506

[13] Hwang, J.-M. On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math., Tome 556 (2003), pp. 225-235 | Article | MR: 1971147 | Zbl: 1016.14022

[14] Hwang, J.-M. Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1, Ann. Inst. Fourier (Grenoble), Tome 57 (2007) no. 3, pp. 815-823 http://aif.cedram.org/item?id=AIF_2007__57_3_815_0 | Article | EuDML: 10243 | Numdam | MR: 2336831 | Zbl: 1126.32011

[15] Hwang, J.-M.; Mok, N. Birationality of the tangent map for minimal rational curves, Asian J. Math., Tome 8 (2004) no. 1, pp. 51-63 | Article | MR: 2128297 | Zbl: 1072.14015

[16] Iliev, A.; Manivel, L. Severi varieties and their varieties of reductions, J. Reine Angew. Math., Tome 585 (2005), pp. 93-139 | Article | MR: 2164624 | Zbl: 1083.14060

[17] Lazarsfeld, R. A Barth-type theorem for branched coverings of projective space, Math. Ann., Tome 249 (1980) no. 2, pp. 153-162 | Article | EuDML: 163398 | MR: 578722 | Zbl: 0434.32013

[18] Maruyama, M. Boundedness of semistable sheaves of small ranks, Nagoya Math. J., Tome 78 (1980), pp. 65-94 http://projecteuclid.org/getRecord?id=euclid.nmj/1118786090 | MR: 571438 | Zbl: 0456.14011

[19] Mukai, S. Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A., Tome 86 (1989) no. 9, pp. 3000-3002 | Article | MR: 995400 | Zbl: 0679.14020

[20] Muñoz, Roberto; Occhetta, Gianluca; Solá Conde, Luis E. On rank 2 vector bundles on Fano manifolds, 2011 (preprint math.AG/1104.1490. To appear in Kyoto J. Math.) | Zbl: pre06296607

[21] Muñoz, Roberto; Occhetta, Gianluca; Solá Conde, Luis E. Rank two Fano bundles on 𝔾(1,4), J. Pure Appl. Algebra, Tome 216 (2012) no. 10, pp. 2269-2273 | Article | MR: 2925820 | Zbl: 1262.14051

[22] Muñoz, Roberto; Occhetta, Gianluca; Solá Conde, Luis E. Uniform vector bundles on Fano manifolds and applications, J. Reine Angew. Math., Tome 664 (2012), pp. 141-162 | MR: 2980134 | Zbl: 1271.14058

[23] Niven, I. Irrational numbers, The Carus Mathematical Monographs, No. 11, The Mathematical Association of America. John Wiley and Sons, Inc., New York, N.Y., 1956 | MR: 80123 | Zbl: 0070.27101

[24] Novelli, C.; Occhetta, Gianluca Projective manifolds containing a large linear subspace with nef normal bundle, Michigan Math. J., Tome 60 (2011) no. 2, pp. 441-462 | Article | MR: 2825270 | Zbl: 1229.14015

[25] Okonek, C.; Schneider, M.; Spindler, H. Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, Boston, Mass., 1980, viii+239 pages | MR: 561910 | Zbl: 0438.32016

[26] Ottaviani, G. On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7), Tome 4 (1990) no. 1, pp. 87-100 | MR: 1047517 | Zbl: 0722.14006

[27] Reid, M. The complete intersection of two or more quadrics (1972) (Ph. D. Thesis)

[28] Sarkisov, V. G. On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat., Tome 46 (1982) no. 2, p. 371-408, 432 | MR: 651652 | Zbl: 0593.14034

[29] Sato, E. Projective manifolds swept out by large-dimensional linear spaces, Tohoku Math. J. (2), Tome 49 (1997) no. 3, pp. 299-321 | Article | MR: 1464179 | Zbl: 0917.14026

[30] Sols, Ignacio; Szurek, Michał; Wiśniewski, Jarosław A. Rank-2 Fano bundles over a smooth quadric Q 3 , Pacific J. Math., Tome 148 (1991) no. 1, pp. 153-159 http://projecteuclid.org/getRecord?id=euclid.pjm/1102644787 | Article | MR: 1091535 | Zbl: 0733.14006

[31] Szurek, Michał; Wiśniewski, Jarosław A. Fano bundles over 3 and 3 , Pacific J. Math., Tome 141 (1990) no. 1, pp. 197-208 http://projecteuclid.org/getRecord?id=euclid.pjm/1102646779 | Article | Zbl: 0705.14016

[32] Szurek, Michał; Wiśniewski, Jarosław A. On Fano manifolds, which are k -bundles over 2 , Nagoya Math. J., Tome 120 (1990), pp. 89-101 http://projecteuclid.org/getRecord?id=euclid.nmj/1118782199 | MR: 1086572 | Zbl: 0728.14037

[33] Wiśniewski, Jarosław A. On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., Tome 417 (1991), pp. 141-157 | Article | EuDML: 153328 | MR: 1103910 | Zbl: 0721.14023

[34] Zak, F. L. Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, Tome 127, American Mathematical Society, Providence, RI, 1993 | MR: 1234494 | Zbl: 0795.14018

Cited by Sources: