Strong q-variation inequalities for analytic semigroups
Annales de l'Institut Fourier, Volume 62 (2012) no. 6, pp. 2069-2097.

Let T:L p (Ω)L p (Ω) be a positive contraction, with 1<p<. Assume that T is analytic, that is, there exists a constant K0 such that T n -T n-1 K/n for any integer n1. Let 2<q< and let v q be the space of all complex sequences with a finite strong q-variation. We show that for any xL p (Ω), the sequence [ T n (x) ] (λ) n0 belongs to v q for almost every λΩ, with an estimate (T n (x)) n0 L p (v q ) Cx p . If we remove the analyticity assumption, we obtain an estimate (M n (T)x) n0 L p (v q ) Cx p , where M n (T)=(n+1) -1 k=0 n T k denotes the ergodic average of T. We also obtain similar results for strongly continuous semigroups (T t ) t0 of positive contractions on L p -spaces.

Soit T:L p (Ω)L p (Ω) une contraction positive, avec 1<p<. Supposons T analytique, au sens où il existe une constante K0 telle que T n -T n-1 K/n pour tout entier n1. Soit 2<q< et soit v q l’espace des suites complexes à q-variation forte bornée. On montre que pour tout xL p (Ω), la suite [ T n (x) ] (λ) n0 appartient à v q pour presque tout λΩ, avec la majoration (T n (x)) n0 L p (v q ) Cx p . Si l’on supprime l’hypothèse d’analyticité, on obtient une majoration (M n (T)x) n0 L p (v q ) Cx p , où M n (T)=(n+1) -1 k=0 n T k désigne la moyenne ergodique de T. On obtient également des résultats similaires pour les semi-groupes fortement continus (T t ) t0 de contractions positives sur L p .

DOI: 10.5802/aif.2743
Classification: 47A35, 37A99, 47B38
Keywords: Ergodic theory, operators on $L^p$, strong $q$-variation, analytic semigroups.
Mot clés : Théorie ergodique, opérateurs sur $L^p$, $q$-variation forte, semi-groupes analytiques.
Le Merdy, Christian 1; Xu, Quanhua 2

1 Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France
2 School of Mathematics and Statistics Wuhan University Wuhan 430072 Hubei China and Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex France
@article{AIF_2012__62_6_2069_0,
     author = {Le Merdy, Christian and Xu, Quanhua},
     title = {Strong $q$-variation inequalities for analytic semigroups},
     journal = {Annales de l'Institut Fourier},
     pages = {2069--2097},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {6},
     year = {2012},
     doi = {10.5802/aif.2743},
     mrnumber = {3060752},
     zbl = {1269.47011},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2743/}
}
TY  - JOUR
AU  - Le Merdy, Christian
AU  - Xu, Quanhua
TI  - Strong $q$-variation inequalities for analytic semigroups
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 2069
EP  - 2097
VL  - 62
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2743/
DO  - 10.5802/aif.2743
LA  - en
ID  - AIF_2012__62_6_2069_0
ER  - 
%0 Journal Article
%A Le Merdy, Christian
%A Xu, Quanhua
%T Strong $q$-variation inequalities for analytic semigroups
%J Annales de l'Institut Fourier
%D 2012
%P 2069-2097
%V 62
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2743/
%R 10.5802/aif.2743
%G en
%F AIF_2012__62_6_2069_0
Le Merdy, Christian; Xu, Quanhua. Strong $q$-variation inequalities for analytic semigroups. Annales de l'Institut Fourier, Volume 62 (2012) no. 6, pp. 2069-2097. doi : 10.5802/aif.2743. https://aif.centre-mersenne.org/articles/10.5802/aif.2743/

[1] Akcoglu, M.; Sucheston, L. Dilations of positive contractions on L p spaces, Canad. Math. Bull., Volume 20 (1977), pp. 285-292 | MR | Zbl

[2] Asmar, N.; Berkson, E.; Gillespie, T. A. Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math., Volume 113 (1991), pp. 47-74 | MR | Zbl

[3] Blunck, S. Analyticity and discrete maximal regularity on L p -spaces, J. Funct. Anal., Volume 183 (2001), pp. 211-230 | MR | Zbl

[4] Bourgain, J. Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES, Volume 69 (1989), pp. 5-41 | Numdam | MR | Zbl

[5] Campbell, J. T.; Jones, R. L.; Reinhold, K.; Wierdl, M. Oscillation and variation for the Hilbert transform, Duke Math. J., Volume 105 (2000), pp. 59-83 | MR | Zbl

[6] Coifman, R.; Rochberg, R.; Weiss, G. Applications of transference: the L p version of von Neumann’s inequality and the Littlewood-Paley-Stein theory, Linear spaces and Approximation, Birkhäuser, Basel, 1978, pp. 53-67 | MR | Zbl

[7] Coifman, R. R.; Weiss, G. Transference methods in analysis, CBMS 31, Amer. Math. Soc., 1977 | MR | Zbl

[8] Coulhon, T.; Saloff-Coste, L. Puissances d’un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist., Volume 26 (1990) no. 3, pp. 419-436 | Numdam | MR | Zbl

[9] Crescimbeni, R.; Macías, R. A.; Menárguez, T.; Torrea, J. L.; Viviani, B. The ρ-variation as an operator between maximal operators and singular integrals, J. Evol. Equ., Volume 9 (2009), pp. 81-102 | MR | Zbl

[10] Delyon, B.; Delyon, F. Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France, Volume 127 (1999), pp. 25-41 | Numdam | MR | Zbl

[11] Dunford, N.; Schwartz, J. T. Linear operators, Part 1, Pure and Applied Mathematics, 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958 | MR | Zbl

[12] Fendler, G. Dilations of one parameter semigroups of positive contractions on L p -spaces, Canad. J. Math., Volume 48 (1997), pp. 726-748 | MR | Zbl

[13] Gaposhkin, V. F. Ergodic theorem for functions of normal operators (Russian), Funktsional. Anal. i Prilozhen., Volume 18 (1984), pp. 1-6 | MR | Zbl

[14] Goldstein, J. A. Semigroups of linear operators and applications, Oxford University Press, New York, 1985 | MR | Zbl

[15] Jones, R. L.; Kaufman, R.; Rosenblatt, J. M.; Wierdl, M. Oscillation in ergodic theory, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 889-935 | MR | Zbl

[16] Jones, R. L.; Reinhold, K. Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 6, pp. 1809-1829 | MR | Zbl

[17] Jones, R. L.; Seeger, A.; Wright, J. Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 6711-6742 | MR | Zbl

[18] Jones, R. L.; Wang, G. Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 4493-4518 | MR | Zbl

[19] Le Merdy, C.; Xu, Q. Maximal theorems and square functions for analytic operators on L p -spaces to appear in J. London Math. Soc. (see also arXiv:1011.1360v1)

[20] Lyubich, Yu. Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math., Volume 134 (1999), pp. 153-167 | MR | Zbl

[21] Lépingle, D. La variation d’ordre p des semi-martingales (French), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 36 (1976), pp. 295-316 | MR | Zbl

[22] Meyer-Nieberg, P. Banach lattices, Springer, Berlin-Heidelberg-NewYork, 1991 | MR | Zbl

[23] Nagy, B.; Zemanek, J. A resolvent condition implying power boundedness, Studia Math., Volume 134 (1999), pp. 143-151 | MR | Zbl

[24] Nevanlinna, O. Convergence of iterations for linear equations, Birkhaüser, Basel, 1993 | MR | Zbl

[25] Oberlin, R.; Seeger, A.; Tao, T.; Thiele, C.; Wright, J. A variation norm Carleson theorem (Preprint 2010, arXiv:1011.1360v1)

[26] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Springer, 1983 | MR | Zbl

[27] Peller, V. An analogue of J. von Neumann’s inequality for the space L p (Russian), Dokl. Akad. Nauk SSSR, Volume 231 (1976) no. 3, pp. 359-542 | MR | Zbl

[28] Pisier, G. Complex interpolation and regular operators between Banach lattices, Arch. Math. (Basel), Volume 62 (1994) no. 3, pp. 261-269 | MR | Zbl

[29] Pisier, G.; Xu, Q. The strong p-variation of martingale and orthogonal series, Probab. Th. Rel. Fields, Volume 77 (1988) no. 3, pp. 497-514 | MR | Zbl

[30] Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. Math. Studies, Princeton University Press, 1970 | MR | Zbl

[31] de la Torre, A. A simple proof of the maximal ergodic theorem, Canad. J. Math., Volume 28 (1976), pp. 1073-1075 | MR | Zbl

[32] Yosida, K. Functional Analysis, Springer Verlag, 1968

Cited by Sources: