Dans cet article, nous expliquons comment la méthode de construction dite “recollement des surfaces bout-à-bout” avec des resultats sur l’ensemble des hypersurfaces complètes non compactes à courbure moyenne constante qui ont un nombre fini de bouts de type Delaunay peuvent être utilisées pour construire des nouvelles familles d’hypersurfaces compactes à courbure moyenne constante qui ont une topologie non triviale.
In this paper, we explain how the end-to-end construction together with the moduli space theory can be used to produce compact constant mean curvature hypersurfaces with nontrivial topology. For the sake of simplicity, the hypersurfaces we construct have a large group of symmetry but the method can certainly be used to provide many more examples with less symmetries.
Keywords: Mean curvature, Compact hypersurface
Mot clés : Courbure moyenne, hypersurface compacte
Jleli, Mohamed 1
@article{AIF_2012__62_1_245_0, author = {Jleli, Mohamed}, title = {Construction of compact constant mean curvature hypersurfaces with topology}, journal = {Annales de l'Institut Fourier}, pages = {245--276}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2705}, mrnumber = {2986271}, zbl = {1250.53008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2705/} }
TY - JOUR AU - Jleli, Mohamed TI - Construction of compact constant mean curvature hypersurfaces with topology JO - Annales de l'Institut Fourier PY - 2012 SP - 245 EP - 276 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2705/ DO - 10.5802/aif.2705 LA - en ID - AIF_2012__62_1_245_0 ER -
%0 Journal Article %A Jleli, Mohamed %T Construction of compact constant mean curvature hypersurfaces with topology %J Annales de l'Institut Fourier %D 2012 %P 245-276 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2705/ %R 10.5802/aif.2705 %G en %F AIF_2012__62_1_245_0
Jleli, Mohamed. Construction of compact constant mean curvature hypersurfaces with topology. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 245-276. doi : 10.5802/aif.2705. https://aif.centre-mersenne.org/articles/10.5802/aif.2705/
[1] Sur la surface de révolution dont la courbure moyenne est constante, Jour. de Mathématique (1841) no. 6, pp. 309-320 | EuDML
[2] New surfaces of constant mean curvature, Math. Z., Volume 214 (1993) no. 4, pp. 527-565 | DOI | EuDML | MR | Zbl
[3] Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero, J. Reine Angew. Math., Volume 564 (2003), pp. 35-61 | DOI | MR | Zbl
[4] End-to-end gluing of constant mean curvature hypersurfaces, Ann. Fac. Sci. Toulouse Math. (6), Volume 18 (2009) no. 4, pp. 717-737 | DOI | EuDML | Numdam | MR | Zbl
[5] Moduli space theory of constant mean curvature hypersurfaces, Adv. Nonlinear Stud., Volume 9 (2009) no. 1, pp. 29-68 | MR | Zbl
[6] Symmetry-breaking for immersed constant mean curvature hypersurfaces, Adv. Nonlinear Stud., Volume 9 (2009) no. 2, pp. 243-261 | MR | Zbl
[7] Construction of constant mean curvature hypersurfaces with prescribed finite number of Delaunay end (To appear) | Zbl
[8] An end-to-end construction for compact constant mean curvature surfaces, Pacific J. Math., Volume 221 (2005) no. 1, pp. 81-108 | DOI | MR | Zbl
[9] Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2), Volume 131 (1990) no. 2, pp. 239-330 | DOI | MR | Zbl
[10] Constant mean curvature surfaces constructed by fusing Wente tori, Invent. Math., Volume 119 (1995) no. 3, pp. 443-518 | DOI | MR | Zbl
[11] Surfaces of revolution with prescribed mean curvature, Tohoku. Math. J ser., Volume 32 (1980), pp. 147-153 | DOI | MR | Zbl
[12] New constant mean curvature surfaces, Experiment. Math., Volume 9 (2000) no. 4, pp. 595-611 http://projecteuclid.org/getRecord?id=euclid.em/1045759525 | DOI | MR
[13] The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom., Volume 30 (1989) no. 2, pp. 465-503 http://projecteuclid.org/getRecord?id=euclid.jdg/1214443598 | MR | Zbl
[14] Bubbles, conservation laws, and balanced diagrams, Geometric analysis and computer graphics (Berkeley, CA, 1988) (Math. Sci. Res. Inst. Publ.), Volume 17, Springer, New York, 1991, pp. 103-108 | MR
[15] The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal., Volume 6 (1996) no. 1, pp. 120-137 | DOI | MR | Zbl
[16] Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom., Volume 9 (2001) no. 1, pp. 169-237 | MR
[17] Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 303-344 | DOI | MR | Zbl
[18] An ened-to-end gluing construction for surfaces of constant mean curvature, University of Washington (2001) (Ph. D. Thesis)
[19] Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., Volume 117 (1993) no. 2, pp. 211-239 | MR | Zbl
[20] Counterexample to a conjecture of H. Hopf, Pacific J. Math., Volume 121 (1986) no. 1, pp. 193-243 http://projecteuclid.org/getRecord?id=euclid.pjm/1102702809 | MR | Zbl
Cité par Sources :