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CONSTRUCTION OF COMPACT CONSTANT MEAN
CURVATURE HYPERSURFACES WITH TOPOLOGY

by Mohamed JLELI (*)

Abstract. — In this paper, we explain how the end-to-end construction to-
gether with the moduli space theory can be used to produce compact constant
mean curvature hypersurfaces with nontrivial topology. For the sake of simplicity,
the hypersurfaces we construct have a large group of symmetry but the method
can certainly be used to provide many more examples with less symmetries.
Résumé. — Dans cet article, nous expliquons comment la méthode de construc-

tion dite “recollement des surfaces bout-à-bout” avec des resultats sur l’ensemble
des hypersurfaces complètes non compactes à courbure moyenne constante qui ont
un nombre fini de bouts de type Delaunay peuvent être utilisées pour construire
des nouvelles familles d’hypersurfaces compactes à courbure moyenne constante
qui ont une topologie non triviale.

1. Introduction and statement of results

The only complete constant mean curvature surfaces known classically
are the sphere, the cylinder, and the one-parameter family of rotation-
ally invariant Delaunay surfaces [1]. The first modern breakthrough was
Wente’s discovery, detailed in [20], of immersed constant mean curvature
tori. Not long afterwards, Kapouleas used transcendental PDE methods to
construct many new constant mean curvature surfaces, including compact
ones with arbitrary genus [10], and noncompact ones with finitely many
ends [9]. Große-Brauckman in [2] subsequently constructed certain of these
noncompact surfaces with large discrete symmetry groups using more clas-
sical methods based on Schwarz reflection. The theory has developed in two
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fairly distinct directions. From the techniques used for Wente’s construction
ultimately has emerged the DPW (Dorfmeister-Pedit-Wu) method, which
draws on the theory of integrable systems, and serves as a replacement for
the Weierstraß representation; on the other hand, Kapouleas construction
has engendered many new PDE approaches to the problem. These theories
have distinct flavors, and in some senses illuminate quite different classes
of surfaces. For example, the former method seems to be more successful
in describing general immersed constant mean curvature surfaces, and is
closely related to many of the computer experiments and simulations of
constant mean curvature surfaces, see [12], while the latter has been par-
ticularly good in describing constant mean curvature surfaces which are
nearly embedded. Then, using the last method, in the past years the theory
of constant mean curvature surfaces in R3 has been the object of intensive
study. In the case of complete noncompact constant mean curvature sur-
faces, the moduli space of such surfaces is now fairly well understood (in
the genus 0 case). Then, many examples of such surfaces are produced in [9]
and [16] and a classification of embedded constant mean curvature surfaces
with three ends is given in [3]. However, the set of compact constant mean
curvature is not so well understood. After the examples of H. Wente and
N. Kapouleas in [8] the authors give a new idea for the construction of a
constant mean curvature compact surfaces of arbitrary genus (g > 3). This
construction is based on two important tools which has been developed for
the understanding of complete noncompact constant mean curvature sur-
faces. The first is the moduli space theory which is developed in [15] and
the second is the end-to-end gluing of constant mean curvature surfaces
developed in [18].
In Rn+1, for n > 3, there exists a one parameter family of hypersurfaces

of revolution that will be denoted by Dτ for τ ∈ (−∞, 0)∪ (0, τ∗] which are
immersed or embedded and have constant mean curvature normalized to
be equal to 1. These hypersurfaces, which were originally studied in [11],
generalize the classical Delaunay surfaces in R3. The space of complete
noncompact constant mean curvature 1 hypersurfaces in Rn+1 which have
k ends, with k ∈ N, asymptotic to the n-Delaunay Dτ will be denoted by
Mk. Let us define:

Definition 1.1. — Let Σ ∈ Mk and LΣ its Jacobi operator. Then, Σ
is said to be nondegenerate if

LΣ : L2(Σ) −→ L2(Σ),

is injective.
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Recently, in [5], we generalized the result of [15]. In order to find a de-
scription of the structure of the set Mk near any nondegenerate element,
we prove a maximum principle for LDτ . However we need to impose a lower
bound on the Delaunay parameter (τ ∈ [τ∗, 0)∪ (0, τ∗]), when the parame-
ter τ∗ depends only in the dimension of the Euclidean space for the result
to hold. In fact, for τ tending to −∞ the number of negative eigenvalues
of LDτ changes which assures the existence of constant mean curvature
hypersurfaces which are cylindrically bounded and which bifurcate from
the family of constant mean curvature hypersurface of revolution which
are immersed in Rn+1 (see [6] ). More precisely, we prove in [5]:

Theorem 1.2 ([5]). — Assume that Σ is a nondegenerate element of
Mk and further assume that the Delaunay parameters τ` of the ends of
Σ satisfy τ` ∈ [τ∗, 0) ∪ (0, τ∗]. Then, there exists an open set U ⊂ Mk

containing Σ, which is a smooth manifold of dimension k (n+ 1).

A generalization for the hypersurface of the result which is developed in
[18] is given in [4]. In particular, starting with two nondegenerate hyper-
surfaces Σ1 ∈ Mk1 and Σ2 ∈ Mk2 and we assume that the ends E1 ⊂ Σ1
and E2 ⊂ Σ2 are asymptotic to the same n-Delaunay Dτ with parameter
τ ∈ [τ∗, 0) ∪ (0, τ∗). Then, we can aligned Σ1 and Σ2 such that the axis
of E1 and of E2 are confused (with opposite directions). Finally, we can
translate one of these hypersurface along this axis and we prove:

Theorem 1.3 ([4]). — Let Σ1 ∈ Mk1 and Σ2 ∈ Mk2 two nondegener-
ate constant mean curvature hypersurfaces described as above. There exists
a family of hypersurfaces which is a connected sum of Σ1 and Σ2. These hy-
persurfaces can be perturbed into a constant mean curvature hypersurface
which is element ofMk1+k2−2.

The aim of this paper is the construction of compact constant mean
curvature hypersurfaces with topology. More precisely, we explain how the
end-to-end construction (Theorem 1.3) together with the moduli space the-
ory (Theorem 1.2) can be used to produce compact constant mean curva-
ture hypersurfaces with nontrivial topology. Starting with the study of
the n-Delaunay hypersurface, we give in Section 2 a parameterization of
such hypersurfaces and we study the asymptotic behavior of the physical
period of this hypersurface as the parameter τ tends to 0. Next, we de-
fine and study the Jacobi operator about an n-Delaunay hypersurface. In
Section 3, we recall some well know results concerning the moduli space
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theory of constant mean curvature hypersurface, the end-to-end construc-
tion of complete noncompact constant mean curvature hypersurfaces and
the balancing formula.
Finally, in Section 4, we start with the description of two families of

complete noncompact constant mean curvature hypersurfaces which will
be used in the construction. The members of the first family are 3-ended
hypersurfaces while the members of the second family are k-ended hy-
persurfaces . In particular, these hypersurfaces are constructed in [7] and
obtained by gluing a finite number of half Delaunay hypersurfaces (with
small Delaunay parameters) to the sphere or a Delaunay hypersurface.
Then, these new hypersurfaces constructed in [7] are non degenerate if you
add a half of Dlaunay with parameters close to zero.
Next, we adopt the method given in [8], to construct many examples

of compact constant mean curvature hypersurfaces by gluing together k
elements of the first family and one element of the second family. These
hypersurfaces we have obtained are immersed, not embedded and have the
topology of a sphere with k handles attached .

2. Delaunay hypersurfaces

It will be more interesting to consider an isothermal type parametriza-
tion for which will be more convenient for analytical purposes. Hence, we
parametrize hypersurfaces of revolution by

(2.1) X(s, θ) = (|τ | eσ(s) θ, κ(s)),

for (s, θ) ∈ R × Sn−1. The constant τ being fixed, the functions σ and κ

are determined by asking that the hypersurface parameterized by X has
constant mean curvature equal to H and also by asking that the metric
associated to the parametrization is conformal to the product metric on
R× Sn−1, namely

(2.2) (∂sκ)2 = τ2e2σ (1− (∂sσ)2) .
We choose the orientation of the hypersurface parameterized by X so

that, the unit normal vector field is given by

(2.3) N :=
(
− ∂sκ

|τ |eσ
θ, ∂sσ

)
.

This time, using (2.2) the first fundamental form g of the hypersurface
parameterized by X is given by

g = τ2 e2σ (ds⊗ ds+ gSn−1),
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where gSn−1 denotes the first fundamental form of Sn−1. Then, the second
fundamental form of the hypersurface parameterized by X is given by

b =
(
∂2
sκ ∂sσ − ∂sκ (∂2

sσ + (∂sσ)2)
)
ds⊗ ds+ ∂sκ gSn−1 .

Therefore, the mean curvature H of the hypersurface parameterized by X
is given by

H = 1
nτ2e2σ

(
(n− 1) ∂sκ− ∂sκ (∂2

sσ + (∂sσ)2) + ∂2
sκ ∂sσ

)
.

This is a rather intricate second order ordinary differential equation in the
functions σ and τ which has to be complimented by the equation (2.2). In
order to simplify our analysis, we use of (2.2) to get rid of the factor τ2 e2σ

in the above equation. This yields

∂sσ ∂
2
sκ = ∂sκ

(
1− n+ ∂2

sσ + (∂sσ)2 + nH ∂sκ
(
1− (∂sσ)2)−1

)
.

Now, we can differentiate (2.2) with respect to s, and we obtain

∂sκ ∂
2
sκ = τ2e2σ∂sσ

(
1− ∂2

sσ − (∂sσ)2) .
The difference between the last equation, multiplied by ∂sσ, and the former
equation, multiplied by ∂sκ, yields

(2.4) ∂2
sσ + (1− n)(1− (∂sσ)2) + nH ∂sκ = 0.

Hence, in order to find constant mean curvature hypersurfaces of revolution,
we have to solve (2.2) together with(2.4).
Let us define ι to be the sign of τ and

τ∗ := 1
n

(n− 1)
n−1
n .

For all τ ∈ (−∞, 0) ∪ (0, τ∗], we define στ ( and we write σ for στ ) to be
the unique smooth nonconstant solution of

(2.5) (∂sσ)2 + τ2
(
eσ + ι e(1−n)σ

)2
= 1,

with initial condition ∂sσ(0) = 0 and σ(0) < 0. Next we define the function
κτ to be the unique solution of

(2.6) ∂sκ = τ2
(
e2σ + ι e(2−n)σ

)
, with κ(0) = 0.

In particular, the hypersurface parameterized by

Xτ (s, θ) := (|τ |eστ (s)θ, κτ (s)),

for (s, θ) ∈ R × Sn−1, is an embedded constant mean curvature hypersur-
face of revolution when τ belongs (0, τ∗], this hypersurface will be referred
to as the “n-unduloid” of parameter τ . In the other case, if τ < 0, this
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hypersurfaces is only immersed and will be referred to as the “n-nodoid”
of parameter τ .

2.1. The physical period of a n-Delaunay hypersurface

The Hamiltonian nature of the equation (2.5) implies that στ is periodic.
We denote its period by a sτ . The physical period of this hypersurface is
defined by

Tτ = κτ (sτ ),
so that

Xτ (s+ sτ , θ) = Xτ (s, θ) + Tτ en+1,

with en+1 = (0Rn , 1). We would like to study the behavior of Tτ as τ varies.
When τ 6= τ∗, it follows from a simple analysis of the equation (2.5) that
the function στ is strictly increasing for s ∈ (0, sτ/2). Hence it can be used
as a change of parameter and we can define

K := κτ ◦ σ−1
τ .

It follows from (2.5) and (2.6) that

∂σK = τ eσ
J(σ)√

1− J2(σ)
where

J(σ) := τ
(
eσ + ι e(1−n)σ

)
.

Then, the expression of Tτ takes the form

(2.7) Tτ = 2
∫ σ+

σ−

τ eσ
J(σ)√

1− J2(σ)
dσ

where σ− < 0 < σ+ are the roots of

J(σ)2 = 1.

Now, we study the asymptotic behavior of Tτ as the parameter τ tends
to 0.

Proposition 2.1. — As τ tends to 0, we have

Tτ = 2 + ι cn |τ |
n
n−1 +O(τ2),

with

cn := 2
n− 1

∫ 1

0

x−
1

n−1
√

1− x2
dx.
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Proof. — We will distinguish two cases according to the sign of τ .
Case 1: Assume that τ < 0 and let us define the function

h(y) := y − y1−n,

which is increasing on (0,∞) and can be used as a change of variable.
Writing h(eσ) = x

|τ | in (2.7), the physical period will be write as

(2.8) Tτ := 2
∫ 1

−1

x√
1− x2

G
( x
|τ |

)
dx,

with
G(x) := 1

h′ ◦ h−1(x) .

Then, there exists c > 0 such that for all x positive the function G

satisfies the two estimates

|G(x)− 1| 6 c (1 + x)−n, and
∣∣∣xG′(x)

∣∣∣ 6 c (1 + x)−n.

Indeed, for x > 0 let y = h−1(x) > 1, then we have

|G(x)−1|(1+x)n 6 (n−1)
(
y−1 +x y−1)n = (n−1)

(
1+y−1−y−n

)n
6 c.

Using these,

T1 := 2
∫ 1

0

x√
1− x2

G
( x
|τ |

)
dx,

satisfies

|T1 − 2| 6 2
∫ 1

0

x√
1− x2

∣∣∣G( x|τ |)− 1
∣∣∣ dx 6 c ∫ 1

0

x√
1− x2

dx

(1 + x
|τ | )n

.

Witting x = 2u
1+u2 and α = 1

|τ | , we have

In =
∫ 1

0

x√
1− x2

dx

(1 + x
|τ | )n

= 4
∫ √

2
2

0

u (1 + u2)n−2 du

(u2 + 2αu+ 1)n .

It is easy to see that for all n > 3, In 6 I3. Moreover, I3 can be written as

I3 =
3∑
k=1

∫ √
2

2

0

αk(τ) du
(u− a(τ))k +

∫ √
2

2

0

βk(τ) du
(u− a−1(τ))k =

3∑
k=1

Jk(τ).

By an easy computation, we prove that

J1 = O(|τ |3 log |τ |) and J2 + J3 = O(|τ |2).

Finally, we deduce that
|T1 − 2| 6 c τ2.

Using similar computations, we have also

|∂τT1| 6 c|τ |.

TOME 62 (2012), FASCICULE 1
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Now, it is easy to verify that there exists a constant c > 0 such that for
all x < 0, we have∣∣∣∣G(x)− 1

n− 1 |x|
− n
n−1

∣∣∣∣ 6 c (1− x)−
2n
n−1 ,

and ∣∣∣xG′(x)
∣∣∣ 6 c (1− x)−

n
n−1 .

Hence

T2 := 2
∫ 0

−1

x√
1− x2

G
( x
|τ |

)
dx,

satisfies∣∣∣∣∣T2 + 2
n− 1 |τ |

n
n−1

∫ 1

0

x−
1

n−1
√

1− x2
dx

∣∣∣∣∣ 6 c τ2
∫ 1
|τ|

0

x−
1

n−1

(1 + x)
n
n−1

dx.

Finally, we see that the last integral converges. Which finishes the proof in
this case.
Case 2: Assume that τ ∈ (0, τ∗) and let us define the function

f(y) := y + y1−n.

Then, changing eσ by y, (2.7) becomes

Tτ := 2 τ2
∫ y+

y−

f(y)√
1− τ2 f2(y)

dy,

with
f(y−) = f(y+) = 1

τ
.

Now, it is clear that f1 the restriction of f in (y−, (n − 1) 1
n ) is strictly

decreasing and f2 the other restriction of f in ((n − 1) 1
n , y+) is strictly

increasing. Hence, the physical period can be written as

Tτ = 2
(∫ τ

τ∗

1

x√
1− x2

G1

(x
τ

)
dx+

∫ 1

τ
τ∗

x√
1− x2

G2

(x
τ

)
dx
)
,

where
G1(x) := f ′1 ◦ f−1

1 (x) and G2(x) := f ′2 ◦ f−1
2 (x).

As in the first case, we prove that∫ τ
τ∗

1

x√
1− x2

G1

(x
τ

)
dx = τ

n
n−1

n− 1

∫ 1

0

x−
1

n−1
√

1− x2
dx+O(τ2),

and ∫ 1

τ
τ∗

x√
1− x2

G2

(x
τ

)
dx = 1 +O(τ2).
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This completes the proof. Lebesgue’s dominated convergence Theorem im-
plies that

lim
τ→0

Tτ = 2.

�

Remark 2.2. — In the case where τ < 0, Tτ is monotone and ∂τTτ > 0.
Indeed, thanks to (2.8) we have

∂τTτ = 2
∫ 1

−1

x2
√

1− x2
n(n− 1) z−n−1(
1 + (n− 1) z−n

)3
dx

τ2 > 0, where z := h−1
( x
|τ |

)
.

2.2. The Jacobi operator about a n-Delaunay

It is well known [19] that the linearized mean curvature operator about
Dτ , which is usually referred to as the Jacobi operator, is given by

Lτ := ∆τ + |bτ |2

where ∆τ is the Laplace-Beltrami operator and |bτ |2 is the square of the
norm of the second fundamental form on Dτ .
Let us define the function ϕτ := |τ | eστ . We find the expression of the

Jacobi operator in term of the function ϕτ
(2.9) Lτ := ϕ−nτ ∂s(ϕn−2

τ ∂s) + ϕ−2
τ ∆Sn−1 + n+ n (n− 1) τ2n ϕ−2n

τ .

It will be convenient to define the conjugate operator

(2.10) Lτ := ϕ
n+2

2
τ Lτ ϕ

2−n
2

τ ,

which is explicitly given in terms of the function ϕτ by

(2.11) Lτ = ∂2
s+∆Sn−1−

(
n− 2

2

)2
+ n(n+ 2)

4 ϕ2
τ+ n(3n− 2)

4 τ2n ϕ2−2n
τ .

Since the operators Lτ and Lτ are conjugate, the mapping properties of
one of them will easily translate for the other one. With slight abuse of
terminology, we shall refer to any of them as the Jacobi operator about Dτ .

Now, we give the following definition:

Definition 2.3. — Let us denote by θ 7→ ej(θ), for j ∈ N, the eigen-
functions of the Laplace-Beltrami operator on Sn−1, which will be nor-
malized to have L2 norm equal to 1 and correspond to the eigenvalue λj .
That is

−∆Sn−1 ej = λj ej ,

TOME 62 (2012), FASCICULE 1
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and

λ0 = 0, λ1 = . . . = λn = n− 1, λn+1 = 2n, . . . and λj 6 λj+1.

We ended this section by giving only the expression of some Jacobi fields,
i.e., solution of the homogeneous problem

Lτ ω = 0,

since these Jacobi fields follow from a rigid motion or by changing the
Delaunay parameter τ . More details are given in [5].

• For τ ∈ (−∞, 0) ∪ (0, τ∗), we define Φ0,+
τ to be the Jacobi field

corresponding to the translation of Dτ along the xn+1 axis

Φ0,+
τ := ϕ

n−4
2 ∂sϕ.

• Since we have n directions orthogonal to xn+1, there are n linearly
independent Jacobi fields which are obtained by translating Dτ in
a direction orthogonal to its axis. We get for j = 1, . . . , n

Φj,+τ :=
(
ϕ
n
2 + |τ |nϕ−n2

)
ej .

• For j = 1, . . . , n, the Jacobi field corresponding to the rotation of
the axis of Dτ takes the form

Φj,−τ (s, θ) := ϕ
n−4

2

(
ϕ ∂sϕ+ κ ∂sκ

)
ej .

• Finally, The Jacobi field corresponding to a change of parameter
τ ∈ (−∞, 0) ∪ (0, τ∗) is given by

Φ0,−
τ := ϕ

n−4
2 (∂τκ ∂sϕ− ∂τϕ ∂sκ) .

Because of the rotational invariance of the operator Lτ , we can intro-
duce the eigenfunction decomposition with respect to the cross-sectional
Laplace-Beltrami operator ∆Sn−1 . In this way, we obtain the sequence of
operators

(2.12) Lτ,j = ∂2
s − λj −

(
n− 2

2

)2
+ n(n+ 2)

4 ϕ2 + n(3n− 2)
4 τ2nϕ2−2n

for j ∈ N. By definition, for each τ and j, the indicial roots of the operator
Lτ,j are the real numbers ±γj(τ) which characterize the exponential rate
of growth (or rate of decay) of the solutions of the homogeneous equation

Lτ,j ω = 0

at infinity (see [15]). Observe that the explicit knowledge of some Jacobi
fields yields some information about the indicial roots of the operator Lτ .
Indeed, since the Jacobi fields Φj,±τ described below are at most linearly
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growing (see [5] ) the associated indicial roots are all equal to 0. Hence we
conclude that for all τ ∈ (−∞, 0) ∪ (0, τ∗]

γj(τ) = 0, for j = 0, . . . , n.

The situation is completely different when j > n+ 1. Indeed, the potential

λj +
(
n− 2

2

)2
− n(n+ 2)

4 ϕ2 − n(3n− 2)
4 τ2nϕ2−2n

which appears in Lτ,j can be seen to be bounded from below by a positive
constant, when j > n + 1 and τ is negative close enough to 0 or posi-
tive (simply use the equation (2.5) to obtain an upper bound for ϕ2 and
τ2nϕ2−2n ). Therefore, when j > n + 1 and τ is not too far away from 0,
the maximum principle holds for Lτ,j and the existence of solutions of the
homogeneous problem Lτ,j w = 0 which either blows up exponentially or
decays exponentially at ∞ follows at once from the construction of barrier
functions of the form s 7→ es . Then, its proved in [5] that:

Proposition 2.4. — The exists τ∗ < 0, depending only on n, such that
for all τ ∈ [τ∗, 0) ∪ (0, τ∗]

γj(τ) > 0, for all j > n+ 1.

3. Well known results

Assume that we are given Σ a complete noncompact, constant mean
curvature hypersurfaces in Rn+1, with k ends which are modeled after
n-Delaunay hypersurfaces. We denote by E1, . . . , Ek the ends of the hyper-
surface Σ. We require that these ends are asymptotic to half n-unduloid or
a half n-nodoid. More precisely, we require that, up to some rigid motion,
each end can be parameterized as the normal graph of some exponentially
decaying function over some Delaunay hypersurface, i.e., up to some rigid
motion, the end E` is parameterized by

(3.1) Y` := Xτ` + ω`Nτ` ,

where Y` is defined in (0,+∞)× Sn−1, τ` ∈ [τ∗, 0) ∪ (0, τ∗] and where the
function ω` is exponentially decaying as well as all its derivatives. More
precisely, we assume that for all k ∈ N, there exists ck > 0 such that

(3.2) |∇k ω`| 6 ck e−γn+1(τ`) s, on (0,+∞)× Sn−1.

TOME 62 (2012), FASCICULE 1
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The Jacobi operator about the end E` is close to the Jacobi operator
about the n-Delaunay hypersurface Dτ` . This follows at once from the fact
that the coefficients of the first and second fundamental forms associated
to the end E` are equal to the coefficients of the first and second funda-
mental form of Dτ` up to some functions which is exponentially decaying
like e−γn+1(τ`) s. The content of the following Lemma is to make this result
quantitatively precise.

Lemma 3.1. — The Jacobi operator about Σ, restricted to the end E`
is given by

LΣ := ∆Σ + |bΣ|2 = Lτ` + L`,

where Lτ` is the operator given in (2.9) and L` is a second order linear
operator whose coefficients and their derivatives are bounded by a constant
times e−γn+1(τ`) s.

Now, we decompose Σ into slightly overlapping pieces which are a com-
pact piece K and the ends E`. Then, we define the following functional
space

Definition 3.2. — For all r ∈ N, δ ∈ R and all α ∈ (0, 1), the function
space Cr,αδ (Σ) is defined to be the space of functions w ∈ Cr,αloc (Σ) for which
the following norm is finite

‖w‖Cr,α
δ

(Σ) :=
k∑
`=1
‖w ◦ Y`‖Er,α

δ
((0,+∞)×Sn−1) + ‖w‖Cr,α(K),

where the space
E`,αδ ([s0,+∞)× Sn−1)

to be the set of functions C`,αloc which are defined on [s0,+∞) × Sn−1 and
for which the following norm is finite :

‖ω‖E`,α
δ

(R×Sn−1) := sup
s>s0

| e−δs ω |C`,α([s,s+1]×Sn−1) .

Here, | . |C`,α([s,s+1]×Sn−1) denotes the usual Hölder norm in [s, s + 1] ×
Sn−1.

Remark 3.3. — The nondegeneracy property introduced in definition1.1
can be given in the last functional space by: the hypersurface Σ ∈ Mk is
said to be nondegenerate if

LΣ : C2,α
δ (Σ) −→ C0,α

δ (Σ),

is injective for all δ < 0.
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Let χ` be a cutoff function which is equal to 0 on E` ∩K and equal to
1 on Y`((c`,+∞)× Sn−1) for some c` > 0 chosen large enough. We define
the deficiency space W(Σ) by

W(Σ) := ⊕k`=1 Span
{
χ` Φj,±` : j = 0, . . . , n

}
.

The analogue of the following result for n = 2 is usually know as the “Linear
Decomposition Lemma” (see [17] and [16]).

Proposition 3.4 ([5]). — We assume that τ` ∈ [τ∗, 0) ∪ (0, τ∗], δ ∈
(− inf` γn+1(τ`), 0), α ∈ (0, 1) and Σ is nondegenerate. Let N (Σ) the trace
of the kernel of LΣ over the deficiency space WΣ, then N (Σ) is a k (n+ 1)
dimensional subspace of W(Σ) which satisfies

Ker(LΣ) ⊂ C2,α
δ (Σ)⊕N (Σ).

If K(Σ) is a k (n+ 1) dimensional subspace of W(Σ) such that

W(Σ) = K(Σ)⊕N (Σ),

we have
LΣ : C2,α

δ (Σ)⊕K(Σ) −→ C0,α
δ (Σ)

is an isomorphism.

3.1. The end-to-end gluing

We introduce the following

Definition 3.5. — Let Σ be a constant mean curvature 1 hypersurface
with k ends of Delaunay type. We will say that the end E of Σ, which is
asymptotic to some Delaunay hypersurface Dτ , is regular if there exists a
Jacobi field Ψ which is globally defined on Σ and which is asymptotic to
Φ0,−
τ (the Jacobi field on Dτ which corresponds to the the change of the

Delaunay parameter τ) on E.

Remark 3.6. — The n-Delaunay hypersurfaces have regular ends and
many other examples are constructed in [7].

It was observed by R. Kusner and proved by J. Ratzkin (see [18] ) that
one can connect together two constant mean curvature surfaces having two
ends with the same Delaunay parameter. This gluing procedure is known
as a “end-to-end connected sum” and generalized for the hypersurfaces
in [4]. To explain this let assume that we are given two nondegenerate,
complete, noncompact, constant mean curvature hypersurfaces Σi ∈ Mki ,
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for i = 1, 2. We denote by Ei,1, . . . , Ei,ki the ends of the hypersuface Σi,
each of which are assumed to be asymptotic to a n- Delaunay hypersurfaces
Dτi,j , j = 1, . . . , ki.

We further assume that Σ1 and Σ2 have one end with the same Delaunay
parameter. For example, let us assume that the Delaunay parameter of E1,1
and E2,1 are the same, both equal to

τ := τ1,1 = τ2,1.

Further more we assume that τ 6= τ∗ i.e., E1,1 and E2,1 are not asymptotic
to a cylinders.
Given m ∈ N, we can use a rigid motion to ensure that the end E1,1 is

parameterized by

Y1,1(s, θ) := Xτ (s, θ) + w1(s+msτ , θ)Nτ (s, θ),

for all (s, θ) ∈ (−msτ ,+∞)×Sn−1 and that the end E2,1 is parameterized
by

Y2,1(s, θ) := Xτ (s, θ) + w2(s−msτ , θ)Nτ (s, θ),
for all (s, θ) ∈ (−∞,m sτ ) × Sn−1. Though this is not explicit in the no-
tation, Yi,1 does depend on m. In addition, we know from (3.1) and (3.2)
that the functions w1 and w2 are exponentially decaying as s tends to +∞
(resp. −∞). More precisely,

w1 ∈ E2,α
−γn+1(τ)((0,+∞)× Sn−1)

and also that
w2 ∈ E2,α

γn+1(τ)((−∞, 0)× Sn−1),

where the function spaces E2,α
δ are introduced in Definition 3.2.

Given s > −msτ , we define the truncated hypersurface

Σ1(s) := Σ1 − Y1,1((s,+∞)× Sn−1))

and given s < msτ we define the truncated hypersurface

Σ2(s) := Σ2 − Y2,1((−∞, s))× Sn−1).

Again, Σi(s) depends on m. Now let s −→ ξ(s) be a cutoff function such
that ξ ≡ 0 for s > 1 and ξ ≡ 1 for s 6 −1. We define the hypersurface Σ̃m
to be

(3.3) Σ̃m := Σ1(−1) ∪ C(1) ∪ Σ2(1),

where, for all s ∈ (0,m sτ ), the cylindrical type hypersurface C(s) is the
image of [−s, s]× Sn−1 by

(3.4) (s, θ) −→ ξ(s) Y1,1(s, θ) + (1− ξ(s)) Y2,1(s, θ).
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By construction Σ̃m is a smooth hypersurface whose mean curvature is
identically equal to 1 except in the annulus C(1) where the mean curvature
is close to 1 and tends to 1 as m tends to +∞. Indeed, in C(msτ ), the
hypersurface Σ̃m is a normal graph over the n-Delaunay hypersurface Dτ
for some function w3. But the estimates we have on w1 and w2 imply that

(3.5) w3 = OC2,α(e−γn+1(τ) (s+msτ )) +OC2,α(eγn+1(τ) (s−msτ ))

on C(msτ ). The mean curvature of Σ̃m in C(msτ ) can then be computed
using Taylor’s expansion

HΣ̃m = HDτ +OC0,α(w3).

It then follows from (3.5) that the mean curvature of Σ̃m can be estimated
by

(3.6) ‖HΣ̃m − 1‖C0,α(C(1)) 6 c e
−mγn+1(τ) sτ .

Observe that, on a given end Ei,j , all Jacobi fields, except the Jacobi
field Φ0,−

Ei,j
which corresponds to a change of Delaunay parameter, come

from the action of the group of rigid motions. Hence, these Jacobi fields
are all globally defined onMi. If we assume that E1,1 is a regular end then,
the Jacobi field Φ0,−

E1,1
also corresponds to a globally defined Jacobi field on

M1. Using this and a fixed point argument we prove

Proposition 3.7 ([4]). — Assume that E1,1 is a regular end. Then
there exists m0 ∈ N such that, for all m > m0 the hypersurface Σ̃m can
be perturbed into a constant mean curvature 1 hypersurface element of
Mk1+k2−2.

3.2. The balancing formula

In this section we recall the well known balancing formula for a constant
mean curvature 1 hypersurface Σ ⊂ Rn+1.

Assume that V is an open subset of Σ and that U ⊂ Rn+1 is an open set
such that

∂ U ∩ Σ = V.

We define
Q := ∂ U − Σ.

With these notations, we have [13]∫
∂ V

η −
∫
Q

ν = 0,
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where η is the exterior conormal of ∂ V relative to V and ν be the exterior
normal to ∂ U .
In the case where the hypersurface Σ is a complete noncompact constant

mean curvature hypersurface with finitely ends E`, for ` = 1, . . . , k, which
are asymptotic to n-Delaunay hypersurfaces Dτ` , its proved in [14] that the
balancing formula reads :

(3.7)
k∑
`=1

ι` |τ`|n ~a` = 0

where ι` is the sign of τ` and ~a` is the direction of the axis of E`, which is
normalized by |~a`| = 1.

4. Construction of compact constant
mean curvature hypersurfaces

We start with the description of two families of complete noncompact
constant mean curvature hypersurfaces which will be used in the construc-
tion. The members of the first family are 3-ended hypersurfaces while the
members of the second family are k-ended hypersurfaces.
Type-1 hypersurfaces
The members of the first family are denoted by Σ(τ, α, `), where τ , α and

` are parameters. These hypersurfaces are assumed to enjoy the following
properties :

(1) Each Σ(τ, α, `) is a complete noncompact constant mean curvature
hypersurface with 3 ends which are denoted by

E−1(τ, α, `), E0(τ, α, `), E1(τ, α, `).

(2) The hypersurface Σ(τ, α, `) is invariant under the action of the
group

G := {I, S} ×O(n− 1)
where S is the symmetry with respect to the hyperplane x1 = 0.

(3) Each Σ(τ, α, `) is nondegenerate and the parameters (τ, α, `) are
local parameters on the moduli space of constant mean curvature
hypersurfaces with 3 ends, which are invariant under the action of
the group G.

(4) The hypersurface Σ(τ, α, `) is obtained by translating Σ(τ, α, 0) by
` ~e2.

(5) Each end of Σ(τ, α, `) is regular.
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(6) Both E−1(τ, α, `) and E1(τ, α, `) are asymptotic to a n-Delaunay
hypersurface of parameter τ .

(7) The end E0(τ, α, `) is asymptotic to a n-Delaunay hypersurface
whose parameter is denoted by τ̃ .

(8) The parameter α ∈ (0, π/2) and the axis of E1(τ, α, 0) is the line of
direction

~a1 := sinα ~e1 − cosα ~e2

passing through the origin. The vector ~a1 being directed toward the
end of E1(τ, α, 0).

(9) The axis of E0(τ, α, 0) is the line of direction

~a0 := −~e2

passing through the origin. The vector ~a0 being directed toward the
end of E0(τ, α, 0).

Here (~e1, . . . , ~en+1) is the canonical base of Rn+1.
Observe that the image of E1(τ, α, `) by S is E−1(τ, α, `) and that

E0(τ, α, `) remains globally fixed under the action of S. The angle α be-
tween the vectors ~a0 and ~a1 is given by

cosα = ~a0 · ~a1

Applying the balancing formula (3.7), we conclude that the Delaunay
parameter τ̃ is given in terms of τ by the formula

τ̃ = −(2 cosα)1/n τ.

In particular the signs of τ and τ̃ are different and this implies that the
hypersurface Σ(τ, α, `) has always an end which is not embedded (a n-
nodoid).
We now give two examples of such a family.

Example 4.1. — A first family can be obtained by gluing onto a sphere
Sn ⊂ Rn+1, three half n-Delaunay hypersurfaces of parameters τ , τ̃ and τ
(resp.) at the points of coordinates

(− sinα,− cosα, 0, . . . , 0) (0,−1, 0, . . . , 0) and (sinα,− cosα, 0, . . . , 0).

This construction is explained in general in [7]. The same construction
works equivariantly, namely if one imposes the hypersurfaces to be invariant
under the action of the group

G := {I, S} ×O(n− 1).

Given the symmetries of the hypersurfaces we want to construct there re-
mains only three degrees of freedom which are the Delaunay parameter τ ,
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the angle α between the ends and the translation parameter ` along the
x2 axis. The construction works for any α ∈ (0, π/2) and any τ 6= 0 close
enough to 0 and the hypersurface obtained is non degenerate for |τ | small.
The fact that the ends are regular follows at once from the construction
itself since τ can be used to parameterize this family of solutions and dif-
ferentiation with respect to this parameter yields a Jacobi field with the
right behavior on the ends.

Example 4.2. — A second family can be obtained by gluing on a n-
Delaunay hypersurface of parameter τ and axis x1, a half n-Delaunay hy-
persurface of parameter τ̃ small enough and axis x2. This time, the con-
struction works for a small value of the parameter τ̃ and the point where
the connected sum occurs can either be a point where στ is minimal or max-
imal. The point being that this Delaunay hypersurface has to be translated
so that it is invariant under the action of the symmetry S.

Type-2 hypersurfaces
Assume that k > 3 is fixed. The members of the second family are

denoted by Σk(τ), where τ is a parameter. These hypersurfaces are assumed
to enjoy the following properties :

(1) Each Σk(τ) is a complete noncompact constant mean curvature
hypersurface with k ends which are denoted by E1(τ), . . . , Ek(τ).

(2) The hypersurface is invariant under the action of the group

Gk := {Rj2π/k : j ∈ N} ×O(n− 1),

where R2π/k is the rotation of angle 2π/k in the x1, x2 plane.
(3) Each Σk(τ) is nondegenerate and the parameter τ is local parameter

on the moduli space of constant mean curvature hypersurfaces with
k ends, which are invariant under the action of the group Gk.

(4) Each end of Σk(τ) is regular.
(5) Each end Σk(τ) is asymptotic to a n-Delaunay hypersurface of pa-

rameter τ .
(6) The axis of E1(τ) is the line of direction ~e2 passing through the

origin. The vector ~e2 being directed toward the end of E1(τ).
Observe that, for j = 1, . . . , k−1, the image of Ej(τ) by R2π/k is the end

Ej+1(τ) and the image of Ek(τ) is the end E1(τ). Hence the angle between
two consecutive ends is given by 2π/k.

Such a family can be obtained by gluing onto a sphere Sn ⊂ Rn+1, k
copies of a half n-Delaunay hypersurface with small Delaunay parameter
τ 6= 0 in such a way that the symmetries are preserved. Again this is the
construction explained in [7]. Given the symmetries of the hypersurfaces
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we construct, there remains only one degree of freedom which is the De-
launay parameter τ of the ends. The construction works for any τ 6= 0
close enough to 0. The fact that the ends are regular follows at once from
the construction itself since τ can be used to parameterize this family of
solutions and differentiation with respect to this parameter yields a Jacobi
field which has the desired behavior at each end.

Remark 4.3. — Starting from a compact or a complete noncompact
constant mean curvature hypersurface with k ends asymptotic to Delaunay
hypersurfaces we construct in [7] a new constant mean curvature hypersur-
face with k+m ends which is obtained by performing a connected sum ofm
additional Delaunay ends of small Delauany parameters at some m points
p1, . . . , pm of the initial hypersurface. Then, hypersurfaces of type 1 and of
type 2 are these new examples if the initial hypersurface is the sphere or
the Delauanay hypersurface. In particular, if these m additional Delauanay
ends used in the gluing are asymptotic to a Delauany hypersurfaces with
small parameters, then these new hypersurfaces are non degenerate and
with regular ends.

We fix k > 3 and define

αk := π

2 −
π

k
.

We assume that, for τ in some open interval I, we are given a family of
hypersurfaces Σ(αk, τ, `) of Type 1 and for τ̃ in some open interval Ĩ, we
are given a family of hypersurfaces Σk(τ̃) of Type 2.
The parameter τ being chosen in I, we define τ̃ by

(4.1) τ̃ = −(2 cosαk)1/n τ.

and we assume that τ̃ ∈ Ĩ.
It will be convenient to denote by X~a

τ the parameterization of the n-
Delaunay hypersurface whose Delaunay parameter is τ , whose axis is the
line directed by ~a passing through the origin, and having a neck passing
through the hyperplane ~x · ~a = 0.

Up to a translation along the x2 - axis, the end E0(τ, αk, 0) of Σ(τ, αk, 0)
can be parameterize as a normal graph over a n-Delaunay hypersurface
Dτ̃ whose axis is x2. Using the fact that Dτ̃ is periodic of period Tτ̃ , we
conclude that there exists uτ̃ ∈ (−Tτ̃ , Tτ̃ ) such that E0(τ, αk, 0) is a graph
over the hypersurface parameterized by

(4.2) (s, θ) −→ X0
τ,αk

(s, θ) := X~e2
τ̃ (s, θ) + uτ̃ ~e2.

Reducing I if this is necessary, we can assume that τ̃ −→ uτ̃ is smooth.
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Similarly, there exists vτ̃ ∈ (−Tτ̃ , Tτ̃ ) such that the end E1(τ̃) of the
hypersurface Σ(τ̃) is a graph over the n-Delaunay hypersurface Dτ̃ whose
axis is x2 parameterized by

(4.3) (s, θ) −→ X1
τ̃ (s, θ) := X~e2

τ̃ (s, θ) + vτ̃ ~e2.

Again, we can assume that τ̃ −→ vτ̃ is smooth.
Finally, there exists wτ ∈ (−Tτ , Tτ ) such that the end E1(α, τ, 0) of

the hypersurface Σ(τ, α, 0) is a graph over the n-Delaunay hypersurface
parameterized by

(4.4) (s, θ) −→ X1
τ,αk

(s, θ) := X~a1
τ (s, θ) + wτ ~a1

and we assume that τ −→ wτ is smooth. In the same way, we can also
denote by X−1

τ,αk
the parametrization of the end E−1(α, τ, 0).

Given m ∈ N, we set

`m := uτ̃ − vτ̃ +mTτ̃

and we consider the hypersurface Σ(τ, αk, `m) which is truncated at its
ends by cutting from this hypersurface the following three pieces

Em0 (τ, αk, `m) := E0(τ, αk, `m) ∩
{
x ∈ Rn+1 : x2 < uτ̃ + m

2 Tτ̃

}
,

Em1 (τ, αk, `m) := E1(τ, αk, `m) ∩ {x ∈ Rn+1 : sin(π/k)x2 > cos(π/k)x1},
and

Em−1(τ, αk, `m) := E−1(τ, αk, `m)∩{x ∈ Rn+1 : sin(π/k)x2 < − cos(π/k)x1}.

The resulting piece of hypersurface will be extended by using the iterated
action of R2π/k and it can be considered as a hypersurface in Rn+1/Gk.

Finally, we truncate the hypersurface Σk(τ̃) at its ends by considering
the intersection of this hypersurface with{
x ∈ Rn+1 : cos(2πj/k)x2 + sin(2πj/k)x1 < uτ̃ + m

2 Tτ̃ j = 0, . . . , k − 1
}
.

The resulting piece of hypersurface is invariant under the action of R2π/k.
We will apply the end-to-end construction to the union of these pieces

of constant mean curvature hypersurfaces which can be connected together
using suitable cutoff functions. Observe that the construction only depends
on the continuous parameter τ and the discrete parameter m. We denote
by Σ(τ,m) this hypersurface which is invariant under the action of the
group Gk. Because of the symmetries we impose, it is only necessary to
worry about the end-to-end gluing at two places. Namely where the end
E0(τ, αk, `m) meets the end E1(τ̃) and where the end E1(τ, αk, `m) meets
the image of E−1(τ, αk, `m) by R2π/k.
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The hypersurface Σ(τ,m) has mean curvature close to 1. Then, this hy-
persurface will be used as an approximate solution in order to to find a
compact constant mean curvature hypersurface with nontrivial topology.
Indeed, we consider hypersurfaces which can be written as a normal graph
over Σ(τ,m), for some “small” function w. The equation guaranties that
this new hypersurface has constant mean curvature equal to 1 takes the
form:

LΣ(τ,m) w +Qτ,m(w) = HΣ(τ,m) − 1,
where LΣ(τ,m) is the Jacobi operator about the hypersurface Σ(τ,m),
HΣ(τ,m) is the mean curvature of Σ(τ,m) and the operator Qτ,m collects
all the nonlinear terms.
Technically, the proof of the gluing construction which is equivalent to

solving the last equation is now identical to what we have done in the proof
of the end-to-end construction we have performed in [4] and which is based
on the use of the Schauder’s fixed point theorem. In the aim to use this we
need to recover two important features :

(1) The fact that the elements of the deficiency spaces, which are neces-
sary to recover the surjectivity of the Jacobi operator about Σ(τ, αk,
`m) and about Σk(τ̃), can be extended to the hypersurface Σ(τ,m).
Using this, we can prove the existence of an inverse of LΣ(τ,m) de-
noted by Gτ,m which is bounded and independent of τ andm. Then
our problem reduces to finding a fixed point for the mapping:

w 7→ Gτ,m

(
HΣ(τ,m) − 1−Qτ,m(w)

)
.

(2) The correct estimate of the mean curvature of the hypersurface
Σ(τ,m). In particular, the quantity ‖HΣ(τ,m)−1‖C0,α(Σ(τ,m)) repre-
sents the radius of the ball where the last map will be a contraction.

We now concentrate on the proof of these two properties.

4.1. The mean curvature of the approximate solution

By construction, the mean curvature of the hypersurface Σ(τ,m) is equal
to 1 except in two annular regions.

Since the end E0(τ, αk, `m) and the end E1(τ̃) are normal graphs over
the same Delaunay hypersurface Dτ̃ , using (4.2)-(4.3) we can connect the
two pieces together by considering the parametrization

Y 0
τ,m(s, θ) := ς(s)X1

τ̃ (s+msτ̃ , θ) + (1− ς(s)) (X0
τ,αk

(msτ̃ − s, θ) + `m ~e2)
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for (s, θ) ∈ (−msτ̃ , sτ̃ )× Sn−1. Here s 7→ ς(s) is a cutoff function equal to
1 for s 6 1 , equal to 0 for s > −1 and satisfies

ς(−s) = 1− ς(s).

We denote by A1 the image of (−1, 1) × Sn−1 by Y 0
τ,m. In this region the

end E0(τ, αk, `m) meets the end E1(τ̃). Hence, the estimate (3.6) we have
obtained in the end-to-end gluing still holds in A1. Therefore, we already
get

‖HΣ(τ,m) − 1‖C0,α(A1) 6 c e
−mγn+1(τ̃) sτ̃ .

It remains to estimate HΣ(τ,m) where the end E1(τ, αk, `m) meets the
image of E−1(τ, αk, `m) by R2π/k. This time, in order to get a similar
estimate, we need to check that the n-Delaunay hypersurface D~a1

τ , which
has been translated by the vector

(uτ̃ − vτ̃ +mTτ̃ )~e2 + wτ ~a1

is invariant under the action of the symmetry by the hyperplane

Πk := {x ∈ Rn+1 : sin(2π/k)x2 = cos(2π/k)x1}.

Hence the above n-Delaunay hypersurface should be symmetric with
respect to the symmetry of the hyperplane Πk. This in turn amounts to
check that there exists an integer m̃ such that

(4.5) sin(π/k) (vτ̃ − uτ̃ +mTτ̃ ) = wτ + m̃
Tτ
2 .

We define
G(τ) := 2

Tτ

(
sin(π/k) (vτ̃ − uτ̃ )− wτ

)
,

and
F(τ) := 2 sin(π/k) Tτ̃

Tτ
,

where we recall that τ̃ is defined by (4.1). We prove the :

Proposition 4.4. — Assume that τ ∈ I is fixed and that

(4.6) ∂τ

(
Tτ̃
Tτ

)
6= 0.

Then there exists m0 ∈ N and, for all m > m0 there exists τm ∈ I such
that

G(τm) +mF(τm) ∈ N.
moreover,

|τ − τm| 6 cm−1

for some constant c independent of m > m0.
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Proof. — Observe that, by construction the function G is bounded in a
fixed neighborhood of τ . Given τ ′ close to τ we evaluate

h(τ ′) := (G(τ ′) +mF(τ ′))− (G(τ) +mF(τ))

using Taylor’s expansion. We obtain

h(τ ′) =
(
m∂τF(τ) + ∂τG(τ)

)
(τ ′ − τ) +mO(|τ − τ ′|2).

Provided m is chosen large enough and{
c0 ∂τ F(τ) > 1 if ∂τ F(τ) > 0
c0 ∂τ F(τ) < −1 if ∂τ F(τ) < 0

we have h(τ) = 0 and |h(τ + c0/m)| > 1. Using the intermediate value
theorem there would exist τm ∈ (τ, τ + c0m

−1) such that

h(τm) =
{

1 + E(ξτ )− ξτ if ∂τ F(τ) > 0
E(ξτ )− ξτ if ∂τ F(τ) < 0

with ξτ = G(τ)+mF(τ)) and E(ξτ ) is the entire part of ξτ . This completes
the proof. �

Remark 4.5. — A close inspection of the proof shows that, we even
obtain many solutions of

G(τ) +mF(τ) ∈ N,

which are close to τ since, given any integer j, we have |h(τ + jc/m)| > j

for m large enough.

Now, assume that (4.5) is fulfilled. Then, we can connect together the end
E1(τ, αk, `m) and the image of E−1(τ, αk, `m) by R2π/k using the following
parametrization

Z0
τ,m(s, θ) := ς(s)X1

τ,αk
(s+m̃sτ , θ)+(1−ς(s))R2π/k◦X−1

τ,αk
(m̃sτ−s, θ)+`m~e2

for (s, θ) ∈ (−m̃ sτ , m̃ sτ )× Sn−1. As above, we denote by A2 the image of
(−1, 1)× Sn−1 by Z0

τ,m. Then, we also get the estimate

‖HΣ(τ,m) − 1‖C0,α(A2) 6 c e
−m̃ γn+1(τ) sτ ,

which is the desired estimate.
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E1(τ, αk, ℓm)

mTτ̃

A2A2αk

π
k

~a1A1

~e2

E0(τ, αk, ℓm)

E−1(τ, αk, ℓm)

m̃ Tτ

E1(τ̃ )

Figure 4.1. The hypersurface Σ(τ,m) with k = 3.

4.2. Extension of the elements of the deficiency spaces

We give a precise description of the Jacobi fields on both Σ(τ, α, `) and on
Σk(τ̃). This description allows one to give a description of the elements of
the deficiency subspaces associated to these hypersurfaces which are needed
to ensure the surjectivity of the Jacobi operators about these hypersurfaces.
We keep the notations we have used in Section 2. Recall that on any end

E asymptotic to a n-Delaunay hypersurface Dτ , there are 2 (n+ 1) locally
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defined Jacobi fields Φj,±E for j = 0, . . . , n, which are asymptotic to the
corresponding Jacobi fields on Dτ .
By assumption, Σ(τ,α, `) is nondegenerate, therefore, the deficiency space

WΣ(τ,α,`) is 6 (n + 1) dimensional. Now, recall that we are working in the
space of hypersurfaces which are invariant under the action of the group
G and this reduces the dimension of the corresponding moduli space to 3
and the deficiency space is now spanned by the 6 functions

Ψ0,±
0 := χE0(τ,α,`) Φ0,±

E0(τ,α,`)

Ψ0,±
1 := χE1(τ,α,`)Φ0,±

E1( tau,α,`) + (χE1(τ,α,`)Φ0,±
E1(τ,α,`)) ◦ S

and
Ψ1,±

1 := χE1(τ,α,`)Φ1,±
E1(τ,α,`) + (χE1(τ,α,`)Φ1,±

E1(τ,α,`)) ◦ S
where χE are cutoff functions which are equal to 1 on the end E, away
from some compact set in Σ(τ, α, `) and Φ1,±

E1(τ,α,`) are the two Jacobi field
corresponding to the translation of the end E1(τ, α, `) and the rotation of
its axis in the direction of

~a⊥1 = cosαk ~e1 + sinαk ~e2.

We now describe the Jacobi fields which are obtained by moving the
three parameters α, τ and ` and which span the nullspace N (Σ(τ, α, `))
defined in the beginning of Section 3.

(1) Changing the ` parameter (keeping τ and α fixed) yields a Jacobi
field

Φ+ = ~NΣ(τ,α,`).~e2

where, ~NΣ(τ,α,`) is the unit normal vector of Σ(τ, α, `). This Jacobi
fields is asymptotic to Ψ0,+

0 on E0(τ, α, `) and is asymptotic to
c1 Ψ0,+

1 +c2 Ψ1,+
1 on E−1(τ, α, `)

⋃
E1(τ, α, `). In fact, c1 = − cosαk

and c2 = sinαk.
(2) Changing the τ parameter (keeping α and ` fixed), yields a Jacobi

field Φ− which is asymptotic to c3 Ψ0,+
1 + c4 Ψ0,−

1 on E−1(τ, α, `)
⋃

E1(τ, α, `) and which is asymptotic to Ψ0,+
0 +c5 Ψ0,−

0 on E0(τ, α, `).
In fact differentiation of (4.1) with respect to τ̃ we get

∂τ τ̃ = −(2 cosαk)1/n

which implies that c3 = −(2 cosαk)1/n.
(3) Changing the α parameter (keeping τ and ` fixed), yields a Ja-

cobi field which is equal to Ψ1,−
1 + c6 Ψ0,+

1 + c7 Ψ0,−
1 + c8 Ψ1,+

1
on E−1(τ, α, `)

⋃
E1(τ, α, `) and which is asymptotic to c9 Ψ0,+

0 on
E0(τ, α, `).
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Recall that the space K(Σ(τ, α, `)) is a 3 dimensional subspace of the
deficiency space WΣ(τ,α,`) chosen so that

WΣ(τ,α,`) = K(Σ(τ, α, `))⊕N (Σ(τ, α, `)).

It follows from the description of the elements of N (Σ(τ, α, `)) that we can
choose

K(Σ(τ, α, `)) = Span{Ψ0,−
0 ,Ψ0,+

0 ,Ψ1,+
1 }.

Similarly, since Σk(τ̃) is assumed to be nondegenerate, the deficiency
spaceWΣk(τ̃) is 2 k (n+1) dimensional. However, recall that we are working
in the space of hypersurfaces which are invariant under the action of the
group Gk and this reduces the dimension of the corresponding moduli space
to 1 and the deficiency space is now spanned by the 2 functions

Ψ̄0,± :=
k∑
j=1

χEj(τ̃) Φ0,±
Ej(τ̃)

here χE are also cutoff functions which are equal to 1 on the end E, away
from some compact set in Σk(τ̃). Since the end E1(τ̃) is assumed to be
regular there exists a globally Jacobi field Φ̄− whose asymptotic on E1(τ̃)
has a nontrivial component on Φ0,−

E1(τ̃). This Jacobi field is obtained by
changing the τ̃ parameter and is asymptotic to Ψ̄0,−+c̄ Ψ̄0,+ on each Ej(τ̃),
were the constant c̄ depends on τ̃ . This implies that the space K(Σk(τ̃))
can be chosen to be

K(Σk(τ̃)) = Span{Ψ̄0,+}.
We apply the above result to the hypersurfaces Σ(τ, αk, `m) and Σk(τ̃).

We would like to extend the elements of K(Σ(τ, αk, `m)) and K(Σ(τ̃)) to
functions which are defined on Σ(τ,m).

(i) First, the element Ψ1,+
1 of K(Σ(τ, αk, `m)) can be easily extended

to Σ(τ,m) using the fact that the end E1(τ, αk, `m) and the image
of E−1(τ, αk, `m) by R2π/k are symmetric with respect to Πk, the
function Ψ1,+

1 ◦Z0
τ,m is asymptotic to the function Φ1,+

1 ◦Z0
τ,m which

is even. We can then define a function Ψ1,+,m on the part of Σ(τ,m)
which is parameterized by Z0

τ,m, as follow:

Ψ1,+,m := χm Ψ1,+
1 + (1− χm) Ψ1,+

1 ◦ (R2π/k)−1.

Here, χm is a cutoff function such that in the part of Σ(τ,m) pa-
rameterized by Y 0

τ,m this function is equal to 1 for s > 1 and equal
to 0 for s 6 −1 otherwise in the part of Σ(τ,m) parameterized by
Z0
τ,m, χm is equal to 0 for s > 1 and equal to 1 for s 6 −1.

Then, we use the action of Gk to extend the function Ψ1,+,m to the
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other components of Σ(τ,m).

(ii) In the same way, the unique Jacobi field Φ̄− defined on Σ(τ̃) can be
extended along the end E0(τ, αk, `m) ( which has been connected
with the end E1(τ̃) of Σ(τ̃) ) using a linear combination of the
globally defined Jacobi fields Φ+ and Φ−. Indeed, the function Φ̄− ◦
Y 0
τ,m is asymptotic to

Φ0,−
τ̃ (.+msτ̃ ) + c̄Φ0,+

τ̃ (.+msτ̃ ).

Similarly, on Σ(τ, αk, `m), the globally defined Jacobi field Φ−◦Y 0
τ,m

is asymptotic to the function

Φ0,−
τ̃ (.−msτ̃ ),

and the globally defined Jacobi field Φ+ ◦Y 0
τ,m is asymptotic to the

function
Φ0,+
τ̃ (.−msτ̃ ).

Now, we define Ψ0,−,m, the extension of Φ̄− on the connected sum
of Em0 (τ, αk, `m) and E0(τ̃) by

Ψ̃0,−,m := χ̄m Φ̄− + (1− χ̄m))
(
Φ− + (c̄+m∂τ̃Tτ̃ ) Φ+).

Here, χ̄m is a cutoff function defined on Σ(τ,m) assumed to be
invariant under the action of Gk and equal to

1−
k∑
j=1

χm ◦R2πj/k.

As above, we use the action of Gk to extend the function Ψ̃0,−,m to
the other components of Σ(τ,m).

The key point is that we do not consider that the end Em1 (τ,αk,`m)
and the image of Em−1(αk, τ, `m) by R2π/k are connected. In fact, on
the part of Σ(τ,m) parameterized by Z0

τ,m for s ∈ (−m̃ sτ , 0) the
function Ψ0,−,m is equal to

Φ− + (c̄+m∂τ̃Tτ̃ ) Φ+

and hence is asymptotic to

c3 Φ0,−
τ (.+ m̃ sτ )+

(
c4 + c1 (c̄+m∂τ̃Tτ̃ )

)
Φ0,+
τ + c2 (c̄+m∂τ̃Tτ̃ ) Φ1,+

τ

for s ∈ (−m̃ sτ̃ , m̃ sτ̃ ). Since

Φ0,−
τ (.+ m̃ sτ ) = Φ0,−

τ (.) + m̃

2 ∂τTτ Φ0,+
τ (.),
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the function Ψ̃0,−,m is also asymptotic to

c3 Φ0,−
τ (.) + c2 (c̄+m∂τ̃Tτ̃ ) Φ1,+

τ +
(
c4 + c1 (c̄+m∂τ̃Tτ̃ ) + m̃

2 ∂τTτ

)
Φ0,+
τ .

The part both Φ0,−
τ and Φ1,+

τ can be extended as we have bone
above because are even functions of the variable s. However, observe
that the coefficient in front of Φ0,+

τ is certainly not zero when m

and m̃ are large enough and Φ0,+
τ is not even. Hence, this function

cannot be extended as we have already done.
To end this discussion, observe that the function Ψ̃0,−,m is on the
different summands a Jacobi field.
We set

µ := c4 + c1 (c̄+m∂τ̃Tτ̃ ) + m̃

2 ∂τTτ .

(iii) The element Ψ0,+
1 of K(Σ(τ, αk, `m)) can be easily extended to

Σ(τ,m) after adding to it a suitable multiple of the function Ψ0,−,m

described above. Indeed, the function

Ψ̃0,+
1 := Ψ0,+

1 − µ−1 Ψ̃0,−,m

is now an even function of s on the image of Z0
τ,m and hence can be

extended to a function Ψ0,+,m on Σ(τ,m) by defining, on the part
of Σ(τ,m) parameterized by Z0

τ,m,

Ψ0,+,m := χm Ψ̃0,+
1 + (1− χm) Ψ̃0,+

1 ◦ (R2π/k)−1.

(iv) The element Ψ̄0,+ of K(Σk(τ̃)) can be extended to Σ(τ,m) using the
unique Jacobi field Φ+ defined on Σ(τ, αk, `m) which is asymptotic
to Φ0,+

Em0 (τ,α,`) on Em0 (τ, αk, `m) to which a suitable multiple of a
the function Ψ0,−,m is added. We define a function Ψ̄0,+,m first by
writing

Ψ̄0,+,m := χ̄m Ψ̄0,+
1 + (1− χ̄m) Φ+ − c2 µ−1 Ψ̃0,−,m,

on the part of Σ(τ,m) which is parameterized by Y 0
τ,m. Observe

that Φ+ is asymptotic to a linear combination of Ψ0,+
1 and Ψ1,+

1 on
the other ends of Σ(τ, αk, `m) and we can use the type of extension
described in (i) to extend the function to Σ(τ,m). For example,

Ψ̄0,+,m := χm(Φ+−c2µ−1Ψ̃0,−,m)+(1−χm)(Φ+−c2µ−1Ψ̃0,−,m)◦(R2π/k)−1,

on the part of Σ(τ,m) which is parameterized by Z0
τ,m. Then, we

use the action of Gk to extend the function Ψ̄0,+,m to the other
components of Σ(τ,m).
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(v) It remains to explain how to extend the element Φ− of K(Σk(τ̃))
to Σ(τ,m). Observe that (Φ−+m∂τ̃Tτ̃ Φ+) ◦Z0

τ,m is asymptotic to

Φ0,−
τ̃ (.−msτ̃ ) +m∂τ̃Tτ̃ Φ0,+

τ̃ (.−msτ̃ )

and Φ0,−
E0(τ̃) ◦ Y

0
τ,m is asymptotic to

Φ0,−
τ̃ (.+msτ̃ ).

Thanks to (1), we can add to these functions a suitable multiple
of the function Ψ̃0,−,m and connect these as we have already done
above, to define the function Ψ0,−,m. For example, we define

Ψ0,−,m := χ̄m (1− µ−1) Φ− + (1− χ̄m)
(

Φ+ +m∂τ̃Tτ̃ Φ+ − µ−1 Ψ̃0,−,m
)

on the part of Σ(τ,m) which is parameterized by Y 0
τ,m. And we

define

Ψ0,−,m := χ̄m

(
Φ− +m∂τ̃Tτ̃ Φ+ − µ−1 Ψ̃0,−,m

)
+ (1− χ̄m)

(
Φ− +m∂τ̃Tτ̃ Φ+ − µ−1 Ψ̃0,−,m

)
◦ (R2π/k)−1

on the part of Σ(τ,m) which is parameterized by Z0
τ,m. Then, we

use the action of Gk to extend this function to the other components
of Σ(τ,m).

As usual cutoff functions are used to interpolate smoothly between the
different functions in the annulus A1 and A2. We define

δ̃ = inf{γn+1(τ), γn+1(τ̃)} > 0.

As in [4], let δ ∈ (−δ̃, 0) and m̃ is the integer defined by m̃ = G(τ)+mF (τ).
We have

LΣ(τ,m) Ψ = OC0,α(A1)(e−δmsτ̃ )
and

LΣ(τ,m) Ψ = OC0,α(A1)(e−δmsτ̃ )
for Ψ = Ψ̃0,−,m, Ψ0,+,m, Ψ̄0,+,m, Ψ1,+,m.
Then we define

K(Σ(τ,m)) = Span{Ψ̃0,−,m,Ψ0,+,m, Ψ̄0,+,m,Ψ1,+,m}

and we define the weighted spaces Dk,αδ (Σ(τ,m)) such that the norm of
a function in this space is the sum of the usual Hölder norm on compact
parts of the pieces constituting Σ(τ,m) and these on the annulus A1 and
A2 times respectively e−δmsτ̃ and e−δm̃sτ .
The analysis of the Jacobi operator about Σ(τ,m) can now be performed

following what we have done in [4]. We obtain the :
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Proposition 4.6. — Assume that δ ∈ (−δ̃, 0) is fixed. There existm0 >

0 and c > 0 and, for all m > m0, one can find an operator

Gτ,m : D0,α
δ (Σ(τ,m)) −→ D2,α

δ (Σ(τ,m))⊕K(Σ(τ,m)),

such that w := Gτ,m(f) solves LΣ(τ,m) w = f on Σ(τ,m). Furthermore,

‖w‖D2,α
δ

(Σ(τ,m))⊕K(Σ(τ,m)) 6 c ‖f‖D0,α
δ

(Σ(τ,m)).

4.3. Compact constant mean curvature
hypersurfaces with topology

Using the end-to-end construction we obtain the :

Theorem 4.7. — There exists m0 > 0 such that, for all m > m0 and
τ close enough to zero the hypersurface Σ(τ,m) can be perturbed into a
compact constant mean curvature 1 hypersurface.

Proof. — The proof of this result is identical to the proof of the corre-
sponding result of Proposition 3.7. The only point being that we need to
check that (4.6) is fulfilled. Observe that the function

P (τ) := Tτ
Tτ̃

where τ and τ̃ are related by (4.1), is real analytic. Hence either it is
constant or its derivative has a isolated zeros. Using the result of Proposi-
tion 2.1, we see that P is not constant for τ 6= 0 close enough to 0. Indeed,
we use the expansion of Tτ and (4.1) we obtain

P (τ) = 1 + cn
2

(
1− (2n cosαk) 1

n

)
|τ |

n
n−1 +O(|τ |

2n
n−1 ).

Hence the function ∂τP has isolated zeros and away from those zeros, the
examples of hypersurfaces of type 1 and type 2 which are given in the
beginning of Section 4 can be used for the construction. �

Remark 4.8. — These hypersurfaces are not embedded since the ele-
ments of Type 1 which have been used for their construction are never
embedded.
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