Let be a number field. Let be a finite set of places of containing all the archimedean ones. Let be the ring of -integers of . In the present paper we consider endomorphisms of of degree , defined over , with good reduction outside . We prove that there exist only finitely many such endomorphisms, up to conjugation by , admitting a periodic point in of order . Also, all but finitely many classes with a periodic point in of order are parametrized by an irreducible curve.
Soit un corps de nombres. Soit un ensemble fini de places de contenant toutes les places archimédiennes. Soit l’anneau des -entiers de . Dans cet article on considère les endomorphismes de degré de la droite projective, définie sur , avec bonne réduction en dehors de . On démontre qu’il n’existe qu’un nombre fini de tels endomorphismes, à conjugaison par l’action de près, qui admettent un point périodique -rationnel d’ordre . De plus, toutes les classes, sauf un nombre fini, ayant un point périodique -rationnel d’ordre , sont paramétrées par une courbe irréductible.
Keywords: Rational maps, moduli spaces, $S$-unit equations, reduction modulo $\mathfrak{p}$
Mot clés : applications rationnelles, espaces de modules, équations en $S$-unités, réduction modulo $\mathfrak{p}$
Canci, Jung Kyu 1
@article{AIF_2010__60_3_953_0, author = {Canci, Jung Kyu}, title = {Rational periodic points for quadratic maps}, journal = {Annales de l'Institut Fourier}, pages = {953--985}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {3}, year = {2010}, doi = {10.5802/aif.2544}, mrnumber = {2680821}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2544/} }
TY - JOUR AU - Canci, Jung Kyu TI - Rational periodic points for quadratic maps JO - Annales de l'Institut Fourier PY - 2010 SP - 953 EP - 985 VL - 60 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2544/ DO - 10.5802/aif.2544 LA - en ID - AIF_2010__60_3_953_0 ER -
%0 Journal Article %A Canci, Jung Kyu %T Rational periodic points for quadratic maps %J Annales de l'Institut Fourier %D 2010 %P 953-985 %V 60 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2544/ %R 10.5802/aif.2544 %G en %F AIF_2010__60_3_953_0
Canci, Jung Kyu. Rational periodic points for quadratic maps. Annales de l'Institut Fourier, Volume 60 (2010) no. 3, pp. 953-985. doi : 10.5802/aif.2544. https://aif.centre-mersenne.org/articles/10.5802/aif.2544/
[1] Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, Volume 86 (2001) no. 2, pp. 175-195 | DOI | MR | Zbl
[2] Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. (3), Volume 24 (1972), pp. 385-394 | DOI | MR | Zbl
[3] Heights in Diophantine Geometry, New Mathematical Monographs, Cambridge University Press, Cambridge, 2006 no. 4 | MR | Zbl
[4] Cycles for rational maps with good reduction outside a prescribed set, Monatsh. Math., Volume 149 (2007) no. 4, pp. 265-287 | DOI | MR | Zbl
[5] A lower bound for the height of a rational function at -unit points, Monatsh. Math., Volume 144 (2005) no. 3, pp. 203-224 | DOI | MR | Zbl
[6] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl
[7] Effective finiteness results for binary forms with given discriminant, Compositio Math., Volume 79 (1991) no. 2, pp. 169-204 | Numdam | MR | Zbl
[8] On sums of -units and linear recurrences, Compositio Math., Volume 53 (1984) no. 2, pp. 225-244 | Numdam | MR | Zbl
[9] Diophantine Geometry, Graduate Texts in Mathematics, 201, Springer-Verlag, New York, 2000 (An introduction) | MR | Zbl
[10] Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002 | MR | Zbl
[11] Number fields, Springer-Verlag, New York, 1977 (Universitext) | MR | Zbl
[12] Geometry and dynamics of quadratic rational maps, Experiment. Math., Volume 2 (1993) no. 1, pp. 37-83 (With an appendix by the author and Lei Tan) | MR | Zbl
[13] Rational periodic points of rational functions, Internat. Math. Res. Notices (1994) no. 2, pp. 97-110 | DOI | MR | Zbl
[14] Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math., Volume 461 (1995), pp. 81-122 | DOI | MR | Zbl
[15] The growth condition for recurrence sequences (1982) (Rep. No. 82-0041)
[16] Diophantine Approximation, Lecture Notes in Mathematics, 785, Springer, Berlin, 1980 | MR | Zbl
[17] Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, 1467, Springer-Verlag, Berlin, 1991 | MR | Zbl
[18] Lectures on the Mordell-Weil Theorem, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997 (Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, with a foreword by Brown and Serre) | MR | Zbl
[19] The space of rational maps on , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | DOI | MR | Zbl
[20] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007 | MR | Zbl
Cited by Sources: