An optimal endpoint trace embedding
Annales de l'Institut Fourier, Volume 60 (2010) no. 3, pp. 939-951.

We find an optimal Sobolev-type space on n all of whose functions admit a trace on subspaces of n of given dimension. A corresponding trace embedding theorem with sharp range is established.

Nous construisons un espace optimal du type Sobolev dont toutes les fonctions admettent une trace sur les sous-espaces de n d’une dimension donnée. Un théorème d’inclusion des traces correspondant avec une image précise est établi.

DOI: 10.5802/aif.2543
Classification: 46E35, 46E30
Keywords: Sobolev spaces, trace inequalities, Lorentz spaces, rearrangement invariant spaces
Mot clés : espaces de Sobolev, inégalités des traces, espaces de Lorentz, espaces invariants par réarrangementxs

Cianchi, Andrea 1; Pick, Luboš 2

1 Università di Firenze Dipartimento di Matematica e Applicazioni per l’Architettura Piazza Ghiberti 27 50122 Firenze (Italy)
2 Charles University Faculty of Mathematics and Physics Department of Mathematical Analysis Sokolovská 83 186 75 Praha 8 (Czech Republic)
@article{AIF_2010__60_3_939_0,
     author = {Cianchi, Andrea and Pick, Lubo\v{s}},
     title = {An optimal endpoint trace embedding},
     journal = {Annales de l'Institut Fourier},
     pages = {939--951},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {3},
     year = {2010},
     doi = {10.5802/aif.2543},
     mrnumber = {2680820},
     zbl = {1208.46029},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2543/}
}
TY  - JOUR
AU  - Cianchi, Andrea
AU  - Pick, Luboš
TI  - An optimal endpoint trace embedding
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 939
EP  - 951
VL  - 60
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2543/
DO  - 10.5802/aif.2543
LA  - en
ID  - AIF_2010__60_3_939_0
ER  - 
%0 Journal Article
%A Cianchi, Andrea
%A Pick, Luboš
%T An optimal endpoint trace embedding
%J Annales de l'Institut Fourier
%D 2010
%P 939-951
%V 60
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2543/
%R 10.5802/aif.2543
%G en
%F AIF_2010__60_3_939_0
Cianchi, Andrea; Pick, Luboš. An optimal endpoint trace embedding. Annales de l'Institut Fourier, Volume 60 (2010) no. 3, pp. 939-951. doi : 10.5802/aif.2543. https://aif.centre-mersenne.org/articles/10.5802/aif.2543/

[1] Adams, R. A. Sobolev spaces, Academic Press, New York-London, 1975 (Pure and Applied Mathematics, Vol. 65) | MR | Zbl

[2] Bennett, C.; Sharpley, R. Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press Inc., Boston, MA, 1988 | MR | Zbl

[3] Brézis, H.; Wainger, S. A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, Volume 5 (1980) no. 7, pp. 773-789 | DOI | MR | Zbl

[4] Burenkov, V. I. Sobolev spaces on domains, Teubner-Texte zur Mathematik, 137, B. G. Teubner, Stuttgart, 1998 | MR | Zbl

[5] Cianchi, A.; Kerman, R.; Pick, L. Boundary trace inequalities and rearrangements, J. Anal. Math., Volume 105 (2008), pp. 241-265 | DOI | MR | Zbl

[6] Cianchi, A.; Pick, L. Sobolev embeddings into BMO, VMO, and L , Ark. Mat., Volume 36 (1998) no. 2, pp. 317-340 | DOI | MR | Zbl

[7] Cianchi, A.; Randolfi, M. On the modulus of continuity of Sobolev functions (preprint)

[8] Costea, Serban; Maz’ya, Vladimir Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev Spaces in Mathematics. II (Int. Math. Ser. (N. Y.)), Volume 9, Springer, New York, 2009, pp. 103-121 | MR | Zbl

[9] Edmunds, D. E.; Kerman, R.; Pick, L. Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal., Volume 170 (2000) no. 2, pp. 307-355 | DOI | MR | Zbl

[10] Hansson, K. Imbedding theorems of Sobolev type in potential theory, Math. Scand., Volume 45 (1979) no. 1, pp. 77-102 | MR | Zbl

[11] Kerman, R.; Pick, L. Optimal Sobolev imbeddings, Forum Math., Volume 18 (2006) no. 4, pp. 535-570 | DOI | MR | Zbl

[12] Maz’ya, V. G. Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR

[13] O’Neil, R. Convolution operators and L(p,q) spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | DOI | MR | Zbl

[14] O’Neil, R. Integral transforms and tensor products on Orlicz spaces and L(p,q) spaces, J. Analyse Math., Volume 21 (1968), pp. 1-276 | DOI | MR | Zbl

[15] Peetre, J. Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble), Volume 16 (1966) no. fasc. 1, pp. 279-317 | DOI | Numdam | MR | Zbl

[16] Stein, E. M. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[17] Stein, E. M. Editor’s note: the differentiability of functions in R n , Ann. of Math. (2), Volume 113 (1981) no. 2, pp. 383-385 | MR | Zbl

[18] Talenti, G. Inequalities in rearrangement invariant function spaces, Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 177-230 | MR | Zbl

[19] Ziemer, W. P. Weakly differentiable functions, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989 (Sobolev spaces and functions of bounded variation) | MR | Zbl

Cited by Sources: