In this paper we discuss various problems regarding the structure of the foliation of some foliated submanifolds of , in particular Levi flat ones. As a general scheme, we suppose that is bounded along a coordinate (or a subset of coordinates), and prove that the complex leaves of its foliation are planes.
Dans cet article nous considérons différentes questions relatives à la structure du feuilletage de certaines sous-variétés , en particulier les variétés Levi-plates. Comme schéma général, on suppose que est bornée le long d’une coordonnée (ou d’un sous-ensemble des coordonnées), et on montre que les feuilles complexes de son feuilletage sont des plans.
Keywords: Levi flat submanifolds, Liouville theorem, analytic multifunctions
Mot clés : sous-variétés Levi-plates, Théorème de Liouville, multifonctions analytiques
Della Sala, Giuseppe 1
@article{AIF_2010__60_2_711_0, author = {Della Sala, Giuseppe}, title = {Liouville-type theorems for foliations with complex leaves}, journal = {Annales de l'Institut Fourier}, pages = {711--725}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {2}, year = {2010}, doi = {10.5802/aif.2537}, mrnumber = {2667791}, zbl = {1194.32026}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2537/} }
TY - JOUR AU - Della Sala, Giuseppe TI - Liouville-type theorems for foliations with complex leaves JO - Annales de l'Institut Fourier PY - 2010 SP - 711 EP - 725 VL - 60 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2537/ DO - 10.5802/aif.2537 LA - en ID - AIF_2010__60_2_711_0 ER -
%0 Journal Article %A Della Sala, Giuseppe %T Liouville-type theorems for foliations with complex leaves %J Annales de l'Institut Fourier %D 2010 %P 711-725 %V 60 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2537/ %R 10.5802/aif.2537 %G en %F AIF_2010__60_2_711_0
Della Sala, Giuseppe. Liouville-type theorems for foliations with complex leaves. Annales de l'Institut Fourier, Volume 60 (2010) no. 2, pp. 711-725. doi : 10.5802/aif.2537. https://aif.centre-mersenne.org/articles/10.5802/aif.2537/
[1] On the smoothness of Levi-foliations, Publ. Mat., Volume 32 (1988) no. 2, pp. 171-177 | MR | Zbl
[2] On the topology of compact smooth three-dimensional Levi-flat hypersurfaces, J. Geom. Anal., Volume 2 (1992) no. 6, pp. 489-497 | MR | Zbl
[3] Levi-flat minimal hypersurfaces in two-dimensional complex space forms, Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie (Kyoto/Nara, 1999) (Adv. Stud. Pure Math.), Volume 37, Math. Soc. Japan, Tokyo, 2002, pp. 1-44 | MR | Zbl
[4] Polydiscs in complex manifolds, Math. Ann., Volume 227 (1977) no. 2, pp. 145-153 | DOI | MR | Zbl
[5] A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1369-1385 | DOI | Numdam | MR | Zbl
[6] An extension theorem for CR-functions, Ann. Mat. Pura Appl. (4), Volume 137 (1984), pp. 257-263 | DOI | MR | Zbl
[7] On the Levi-flats in complex tori of dimension two, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 2, pp. 361-377 | DOI | MR | Zbl
[8] Note sur les familles de fonctions analytiques multiformes, J. Sci. Hiroshima Univ. Ser. A, Volume 4 (1934), pp. 93-98 | Zbl
[9] The Morse-Sard theorem with mixed differentiability, Indiana Univ. Math. J., Volume 40 (1991) no. 4, pp. 1387-1396 | DOI | MR | Zbl
[10] A new approach to analytic multifunctions, Set-Valued Anal., Volume 7 (1999) no. 2, pp. 159-194 | DOI | MR | Zbl
[11] On the polynomial hull of a graph, Indiana Univ. Math. J., Volume 42 (1993) no. 2, pp. 477-503 | DOI | MR | Zbl
[12] Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension , Ann. of Math. (2), Volume 151 (2000) no. 3, pp. 1217-1243 | DOI | MR | Zbl
[13] Analytic set-valued functions and spectra, Math. Ann., Volume 256 (1981) no. 3, pp. 363-386 | DOI | MR | Zbl
[14] Uniform approximation on smooth curves, Acta Math., Volume 115 (1966), pp. 185-198 | DOI | MR | Zbl
Cited by Sources: