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LIOUVILLE-TYPE THEOREMS FOR FOLIATIONS
WITH COMPLEX LEAVES

by Giuseppe DELLA SALA

Abstract. — In this paper we discuss various problems regarding the structure
of the foliation of some foliated submanifolds S of Cn, in particular Levi flat ones.
As a general scheme, we suppose that S is bounded along a coordinate (or a subset
of coordinates), and prove that the complex leaves of its foliation are planes.

Résumé. — Dans cet article nous considérons différentes questions relatives à
la structure du feuilletage de certaines sous-variétés S ⊂ Cn, en particulier les
variétés Levi-plates. Comme schéma général, on suppose que S est bornée le long
d’une coordonnée (ou d’un sous-ensemble des coordonnées), et on montre que les
feuilles complexes de son feuilletage sont des plans.

Introduction

Let S be a foliated submanifold of Cn+d = Cn×Cd, Cn = Cnz , Cd = Cdw.
In this paper we address the following general question: If S is bounded in
some directions, what can be said about leaves endowed with a structure
of regular immersed complex manifold? A particularly important example
we considered in this setting is that of Levi-flat manifolds, namely CR

manifolds which are foliated by complex leaves. As it is well known Levi-
flat hypersurfaces appear in complex analysis as “limit objects” in many
extension problems (see, for example, [6]). The study of their geometric
properties in the last 15 years maturated in a fruitful area of research
(see [3], [2], [12], [5], [7] among many others).

We will show that, in some circumstances, it is possible to conclude that
such leaves are linear spaces. A first result in this direction states that a

Keywords: Levi flat submanifolds, Liouville theorem, analytic multifunctions.
Math. classification: 32V40.



712 Giuseppe DELLA SALA

smooth Levi-flat submanifold of codimension 2d− 1 of Cn ×Cd, contained
in the w-cylinder

C =
{

(z, w) ∈ Cn+d :
d∑
i=1
|wi|2 < 1

}
and closed in C is foliated by coordinate hyperplanes {w = const} (Theo-
rem 1.1).

The proof of Theorem 1.1 for codimension one (i.e. d = 1) is a rather
easy consequence of Liouville’s Theorem for analytic multifunctions. Orig-
inally introduced by Oka [8], the analytic multifunctions are set-valued
functions C→ k(C) (where k(C) denote the subset of P(C) formed by the
compact subsets of C) which behave in some ways as analytic functions;
Namely, according to Oka’s definition, the complement of their graph is
pseudoconvex. For our scope it is more convenient to use the characteri-
zation found by Slodkowski [13] by means of plurisubharmonic functions.
The proof for higher codimension requires a slightly less trivial application
of the Liouville’s Theorem.

In Section 2 we consider the case of a smooth codimension one foliation
on the graph of a bounded function on Cnz × Ru, in particular a Levi flat
graph. In this case, the methods of analytic multifunctions do not seem
sufficient, and we proceed by an analysis of each single complex leaf. The
main result is contained in Theorems 2.1, 2.2.

Acknowledgments. — I wish to thank my thesis advisor, G. Tomassini,
for suggesting the problems and otherwise helping in many crucial ways
during the redaction of this paper. I am grateful to N. Shcherbina for vari-
ous useful discussions on the subject, and in particular for his advice about
the employment of analytic multifunctions. Finally, I am thankful to the
referee for many important remarks, including the suggestion of develop-
ments of the results presented here, and for pointing out and correcting
several not-so-innocent mistakes.

This paper was written partly when the author had a research position
at Pisa University, and partly during a post-doc at the IMB in Dĳon.

1. Levi-flat manifolds in a w-cylinder

Let Cn+d = Cn × Cd, Cn = Cnz , Cd = Cdw, with complex coordinates
z1, . . . , zn, w1, . . . , wd. In what follows, we want to consider Levi flat sub-
manifolds which are not necessarily hypersurfaces:

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE TYPE THEOREMS 713

Definition. — We say that a maximally complex (2d−1)-codimensional
submanifold S of Cn+d of class at least C1 is Levi flat if its CR tangent bun-
dle H(S) is integrable: In such a case S admits a foliation by n-dimensional
complex leaves.

The aim of this section is to prove the following

Theorem 1.1. — Let S ⊂ Cn+d be a (2d − 1)-codimensional Levi flat
submanifold of class C1 contained in the w-cylinder

C =
{

(z, w) ∈ Cn+d :
d∑
i=1
|wi|2 < 1

}
and closed in C. Then S is foliated by complex coordinate n-planes
{w1 = c1, . . . , wd = cd}.

Let us recall some results on analytic multifunctions that will be used in
the proof.

1.1. Analytic multifunctions and Liouville’s Theorem

Consider a function f : Cn → P(Ck), i.e. a set-valued function from Cn
to the power set of Ck. Then f is said to be a multifunction and its graph
is the set Γ(f) ⊂ Cn+k defined as

Γ(f) =
⋃
z∈Cn
{z} × f(z).

We will always suppose that each value f(z) is a compact set and that f
satisfies the following upper semicontinuity property: For every z0 ∈ Cn
and for every ε > 0 there exist δ > 0 such that f(z) is contained in the
ε-neighborhood of f(z0) for every z ∈ B(z0, δ) (this property holds, for
example, whenever f is continuous in the Hausdorff metric); In particular,
Γ(f) is closed.

Definition. — Let f : Cn → P(Ck) be an upper semicontinuous multi-
function. We say that f is an analytic multifunction if, for every continuous
plurisubharmonic function ρ defined in a neighborhood of Γ(f) in Cn+k,
the function ρ′ : Cn → R defined as

ρ′(z) = max
w∈f(z)

ρ(w)

is plurisubharmonic.

TOME 60 (2010), FASCICULE 2



714 Giuseppe DELLA SALA

The concept of analytic multifunction has been introduced by Oka for
k = 1, by requiring Cn+1rΓ(f) to be pseudoconvex. In this way, a holomor-
phic function f ∈ O(Cn) is clearly an analytic multifunction. The definition
we are adopting follows from a result by Slodkowski: In [13] it is proved
that the property of ρ′ being p.s.h. for any p.s.h. ρ characterizes analytic
multifunctions for k = 1. In our context, such a property is actually weaker
than Oka’s definition (as can be seen, for example, by considering a com-
plex line in C3) and this allows us to consider, in addition to hypersurfaces,
higher codimensional submanifolds.

For analytic multifunctions the following Liouville’s result holds (see
also [10]):

Lemma 1.2. — Let f be an analytic multifunction Cn → P(Ck), and
suppose that f is bounded in the following sense:

Γ(f) ⊂
{
|w| < M

}
⊂ Cn+k

for some M > 0. Let f̂ be the multifunction defined as

f̂(z) = f̂(z), z ∈ Cn

where K̂ is the polynomial hull of K. Then f̂ is constant.

Proof. — Let P (w) be a polynomial on Ckw, and denote again by P the
trivial extension to Cn+k P (z, w) = P (w). Then |P | is a plurisubharmonic
function on Cn+k, therefore by definition

P ′(z) = max
{
|P (w)| : w ∈ f(z)

}
is p.s.h. on Cn. But, defining

C = max
|w|6M

P (w)

we have that P ′(z) 6 C for all z ∈ Cn. Then, by Liouville’s Theorem for
plurisubharmonic functions it follows that P ′ is constant. We deduce that
f̂ also is constant. Indeed, in the opposite case we could find w1 ∈ Ck
and z1, z2 ∈ Cn such that w1 ∈ (f̂(z1) r f̂(z2)), i.e. there would exist a
polynomial P1 such that

|P1(w1)| > max
f̂(z2)
|P1|,

hence
P ′1(z2) < |P1(w1)| 6 P ′1(z1)

which is a contradiction. �

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE TYPE THEOREMS 715

Example 1.3. — The hypothesis of Lemma 1.2 does not imply that f is
in turn a constant multifunction. A simple example is the following:

f(z) =

{{
|w| = 1

}
, z 6= 0;{

|w| 6 1
}
, z = 0.

Example 1.4. — A modification of the previous example shows that,
even if Γ(f) is a (disconnected) manifold, f need not be constant if ρ′
is subharmonic whenever ρ is p.s.h. and defined on the whole C2 (this is
slightly weaker than our definition, but it is all that is needed to prove
Lemma 1.2). Indeed, in this case we may define f(z) to be the union of the
unit circle bD and any compact set contained in the unit disc D, as any
subharmonic function can “detect” the behaviour of f only in bD. As we
show below, anyway, the result holds if Γ(f) has the structure of a (even
disconnected) Levi flat manifold (which is obviously not the case in the
previous example).

1.2. Proof of Theorem 1.1

The proof of Theorem 1.1 can be achieved by choosing a complex projec-
tion on Cnz and interpreting S as a multifunction fS with values in P(Cd).
It is immediate to see that fS is analytic (according to Oka’s definition)
when d = 1 ; When d > 1, though, the complement of S is no longer pseu-
doconvex. Lemma 1.5 shows that, nevertheless, fS satisfies our definition.
Afterwards, to prove that fS is constant whenever f̂S is we use the results
of [14] (note that, also for this, the case when d = 1 is “easier” as it involves
only the hull of curves contained in C).

Let Lz, z ∈ Cn, be the vertical complex d-plane over z i.e.

Lz =
{

(ζ, w) ∈ Cn+d : ζ = z
}
.

Consider the set-valued function fS defined by fS(z) = Lz ∩ S: We want
to show that fS is an analytic multifunction.

Lemma 1.5. — fS is an analytic multifunction.

Proof. — Let U be a neighborhood of S in Cn+d, and let ρ : U → R be a
p.s.h. function; Define ρ′ as above. Let z0 ∈ Cn, and let π1 : Cn → CPn−1

be the projection associated to z0; Moreover, let π2 : Cn+d → Cn. Observe
that the Levi foliation of S is still of class C1 by Barrett and Fornaess’
result in [1]. Then, π = π1 ◦ π2 : S → CPn−1, seen as locally defined in
charts ∼= R × Cn, is a map of class C1×ω in the sense defined by Pugh

TOME 60 (2010), FASCICULE 2



716 Giuseppe DELLA SALA

in [9]. By the same paper, it follows that Sard’s lemma holds for π: In
other words, for a generic choice of a complex line L ⊂ Cn passing through
z0, the intersection of S with the complex (d+ 1)-plane{

(z, w) ∈ Cn+d : z ∈ L
}

is transversal, and thus a Levi flat submanifold of Cd+1. Therefore, since it
is sufficient to show that the restriction of ρ′ to a generic L is subharmonic,
we can suppose n = 1.

Assume, then, that fS is a P(Cd)-valued multifunction defined over C,
and fix z0 ∈ C. If w ∈ f(z0), we denote by Σw the leaf of the foliation of S
through w. Two cases are possible:

T(z0,w)(Σw) * Cd and T(z0,w)(Σw) ⊂ Cd.

In the former, for a sufficiently small neighborhood Vw = (∆ × U)w of
(z0, w) we have that Σw ∩ Vw can be written as

Σw ∩ Vw =
{

(z, w) ∈ ∆× U : w1 = gw1 (z), . . . , wd = gwd (z)
}

for some holomorphic function gwi ∈ O(∆). Moreover, observe that for
w′ ∈ f(z0) in a small enough neighborhood Ww of w, we can choose a ∆
which does not depend on w′;

In the latter, consider the restriction of the projection π : Cd+1 → C to
a small neighborhood Vw of (z0, w) in Σw. We can suppose that Vw is a
local chart such that (z0, w) = 0. Denote by ζ the complex coordinate on
Vw. Since π|Vw is a holomorphic function, and its first derivative vanishes
in 0, there exists k > 1 such that

∂j

∂ζj
π|Vw = 0 for j 6 k,

∂k+1

∂ζk+1π|Vw 6= 0.

Otherwise, we would have π|Vw ≡ z0 and so Σw would be a complex line
contained in Cd, which is impossible since it must be contained in the w-
cylinder C of Theorem 1.1. It follows that π|Vw is a (k+1)-sheeted covering
over some neighborhood ∆ of z0. Now, the restriction of π to the leaves Σw′
passing through the points (z0, w′) of a small neighborhood of (z0, w) can
be interpreted as a smooth one-parameter family of holomorphic functions
πt : Vk → Cz, such that π0 = π. For |t| � 1, the argument principle implies
that the sum of the orders of the zeroes of (∂/∂ζ)πt is still k. This in
turn means that for w′ sufficiently close to w the projection π|Σw′ is still a
(k+1)-sheeted covering over some neighborhood ∆w′ ; In a possibly smaller
neighborhood Ww we can assume to have chosen a ∆ independent of w′.

ANNALES DE L’INSTITUT FOURIER
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Since f(z0) is a compact set, we can choose finitely many open sets as
above, Ww1 , . . . ,Wwh , in such a way that

h⋃
i=1
Wwi = f(z0).

Choose a disc ∆ ⊂ ∆w1 ∩ · · · ∩∆wh . We claim that ρ′ is plurisubharmonic
on ∆. In order to prove this, choose w ∈ f(z0):

• If w ∈ Wwj with wj of the first kind, then we define

ρjw = ρ|Σw∩π−1(∆);

• If w ∈ Wwj with wj of the second kind, we define

ρjw =
(

max
Σw∩π−1(∆wj )

ρ(z, w)
)∣∣∣

∆
.

In both cases, ρjw is a plurisubharmonic function. Observe that possibly
ρiw 6= ρjw when i 6= j. Nevertheless, consider

(1.1) %(z) = max
16i6h,w∈f(z0)

ρiw(z);

We have that %(z) = ρ′(z). In fact, the arguments above show that⋃
w∈f(z0)

Σw ∩ π−1(∆) = S ∩ π−1(∆)

and so the maximum of equation (1.1) is attained exactly on f(z) rather
than on a proper subset (as would be the case if leaves of S which accumu-
late on f(z0) without intersecting it existed). Since we already know that
ρ′(z) is continuous, (1.1) implies that ρ′(z) is plurisubharmonic. �

By lemma 1.5 and lemma 1.2 we have that f̂S is a constant multifunction.
We must show that fS is in turn constant.

Proof of Theorem 1.1. — Observe that, as in the proof of lemma 1.5,
the projection S → Cn is of class C1×ω (cf. [9]), hence, for z belonging
to a dense, open subset J of Cn, Lz intersects S transversally. For z ∈ J ,
f(z) = Lz ∩ S is the disjoint union of a finite set {γi(z)}16i6k(z) of loops
in Cd. It is a well-known fact ([14]) that, in this case, the polynomial hull
f̂(z) of f(z) is given by the union of some of the loops γi and some complex
varieties Λj whose boundaries are the others γi’s. We choose the minimal
subsets of loops {αi(z)}16i6h(z) such that, if M(z) = α1 ∪ · · · ∪ αh(z),
then M̂(z) = f̂(z) (in particular, M̂(z) is constant for z ∈ J); Observe
that M(z) is univocally defined. Choose z0 ∈ J : We want to show that
M(z) =M(z0) for z ∈ J and, moreover, thatM(z0) consists of a subset of
connected components of f(z) for any z. In such a case, S′ = S ⊂ ∪zM(z)

TOME 60 (2010), FASCICULE 2
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is a Levi flat submanifold with strictly less connected components than S

and the proof can be achieved inductively.
Observe that, by [14], M̂(z) identifies M(z) univocally, so that clearly
M(z) is constant on J . Since J is dense in Cn and S is closed, it follows
that M(z0) is contained in f(z) for any z. Then Cn ×M(z0) is a 2n + 1
dimensional manifold contained in S, hence it consists of a subset of its
connected components: This concludes the proof. �

1.3. Density of the projection

Let S be a Levi flat hypersurface.The scheme of the proof of Theorem 1.1
can be employed to show that, in fact, the projection of S along a coordinate
w is, in general, dense in Cw.

Theorem 1.6. — Let S be a closed Levi flat hypersurface embedded in
Cn+1 of class C1. Then S is either foliated by complex hyperplanes of the
kind {w = c}, or its projection to Cw is dense.

Proof. — Suppose that the projection is not dense, and let D be a disc in
Cw, centered in w0, which is contained in the complement of the projection
of S. For M � 0, we denote by SM the set

SM = S ∪
{
|w − w0| > M

}
;

Observe that the complement of SM in Cn+1 is pseudoconvex. It is sufficient
to show that SM is a union of complex hyperplanes for each M > 0. Up to
a rational change of coordinates, we can suppose that SM lies in {|w| < 1}.
As before, we consider the multifunction fSM whose fiber over z0 ∈ Cn is
SM ∩ {z = z0}: fSM is analytic and, generically, fSM (z) is the union of a
fixed closed disc D′ and finitely many arcs with endpoints in D

′. Then, a
proof completely analogous to that of Theorem 1.1 shows that fSM is a
constant multifunction. �

2. Foliation of a graph

Consider in Cn+1 = Cn × C coordinates (z1, . . . , zn, w) = (z, w), zj =
xj + iyj , w = u+ iv. We denote by π the projection π : Cn+1 → Cnz and by
τ the projection τ : Cn+1 → Cnz × Ru. Let ρ : Cn × Ru → Rv be a function
of class C1, and suppose that its graph

S =
{
v = ρ(z, u)

}
ANNALES DE L’INSTITUT FOURIER
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carries a C1 foliation F of codimension one; Note that we are not assuming
that all the leaves are complex manifolds. We say that a leaf Σ of F is
properly embedded if, for (almost) every ball B ⊂ Cn+1, the connected
components of B ∩ Σ are compact, embedded submanifolds of B ∩ S with
boundary. We say that F is proper if all the leaves are properly embedded.

The aim of this section is to prove the following

Theorem 2.1. — Let S = {v = ρ(z, u)} be a properly foliated hyper-
surface of Cn+1 of class C1, and suppose that ρ is bounded. Then every
complex leaf of S is a complex hyperplane.

In particular, Theorem 2.1 applies to Levi- flat graphs. In this case,
though, we can actually prove it when ρ is just continuous: In such a situa-
tion, we say that S is Levi flat if it locally separates Cn+1 into pseudocon-
vex domains. Note that, by the results of [11], a Levi flat graph is properly
foliated in the sense given above.

Theorem 2.2. — Suppose that S is Levi-flat and ρ is C0 and bounded
by some constant M . Then S is foliated by complex hyperplanes, i.e.

ρ(z, u) = ρ(u).

Theorem 2.2 can, once again, be proved by means of analytic multifunc-
tions.

Proof of Theorem 2.2. — We may assume n = 1. Indeed, let p1 = (z1, u)
and p2 = (z2, u) be two points in Cnz ×Ru with the same u-coordinate, and
consider the complex line L ⊂ Cnz such that z1, z2 ∈ L. Then the restriction
of ρ to L× Ru has a Levi-flat graph

SL = S ∩ (L× Cw) ⊂ L× Cw ∼= C2.

so Theorem 2.2 for n = 1 applies to SL, showing that ρ|L×Ru is a function
of u and thus that ρ(p1) = ρ(p2).

Thus let n = 1. By hypothesis there exists a complex line {w = c} such
that S lies outside the w-cylinder

C =
{

(z, w) : |w − c| < ε
}
.

Then, we can perform a rational change of coordinates (acting only on the
w-coordinate) which sends ∞ to 0, and such that the image S′ of S is
contained in Cz ×Dw, where Dw is the unit disc. The complement of

S
′ = S′ ∪

(
Cz × {0}

)
TOME 60 (2010), FASCICULE 2
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in Cz ×Dw is pseudoconvex. Indeed, a plurisubharmonic exhaustion func-
tion ϕ for the complement of S in C2 induces a plurisubharmonic exhaus-
tion function ϕ′ for the complement of S′ in Cz × (Dw r {0}); Then

ψ = max
{
ϕ′
∣∣∣ 1
w

∣∣∣}
is a plurisubharmonic exhaustion function for the complement of S′ in
Cz × Dw. Now we can argue as in the proof of Theorem 1.1: In fact, if
f is the multifunction representing S′, f(z) is a simple continuous Jordan
curve, univocally determined by its polynomial hull. �

We are not able to put the method of analytic multifunctions to work
for the proof of Theorem 2.1, so we proceed by analyzing the foliation “leaf
by leaf” instead. It is sufficient to study the case n = 1 (see Theorem 2.2).

2.1. Preliminary facts

First of all, we show the following

Lemma 2.3. — Let Σ be any complex leaf of the foliation of S. Then
the projection π|Σ is a local homeomorphism.

Proof. — For any p ∈ Σ, we have Tp(Σ) = Hp(S) ⊂ Tp(S); Since by
hypothesis ∂/∂v /∈ Tp(S), we deduce ∂/∂w /∈ TC

p (Σ) i.e. the differential of
π|Σ is onto. �

Lemma 2.3 shows that a complex leaf Σ of the foliation is locally a
graph over Cz but, since we do not know whether π : Σ → Cz is actually
a covering, we cannot conclude immediately that π|−1

Σ is single-valued.
However, if this is the case, it is easy to deduce that the thesis of Theorem
2.2 holds true for Σ, provided that the projection π|Σ is onto:

Lemma 2.4. — Let Σ be a complex leaf of S, and suppose that
• π(Σ) = Cz;
• For every z0 ∈ Cz, π−1(z0) ∩ Σ is a single point.

Then there exists c ∈ C such that

Σ = {w = c}.

Proof. — Indeed, in this case the leaf Σ is biholomorphic to C as π|Σ
is one to one; Then, denoting by v the projection on the v-coordinate,
v ◦ (π|Σ)−1 is a harmonic, bounded function on Cz, which is constant by
Liouville’s Theorem. Therefore v|Σ is also constant and so is u|Σ, which is
conjugate to v in Σ. �

ANNALES DE L’INSTITUT FOURIER
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Remark 2.5. — One may ask whether the latter hypothesis in Lem-
ma 2.4 can be replaced by

• π|Σ is a local homeomorphism.
This is not the case: It is not difficult to find examples of surjective (even
finite-to-one) local biholomorphisms D → C (however, much more is true:
Fornaess and Stout [4] showed that any complex manifold is the image of
a polydisc by a finite-to-one local biholomorphism).

In order to prove Theorem 2.2 our strategy is to apply Lemma 2.4 and
so, from now on, we shall focus on a single complex leaf Σ of the foliation
of S and we will prove that its projection over Cz is a biholomorphism. We
set

π(Σ) = Ω ⊂ Cz;
Then, since Σ is a complex curve (or also because of Lemma 2.3), Ω is an
open subset of Cz.

2.2. Analysis of Ω

Our purpose is now to show that Ω is simply connected. In order to
achieve this we employ some lemmas contained in [11], which are part the
in-depth analysis which is carried out therein on the leaves of the foliation of
the Levi-flat solution for graphs. First of all, we prove that π|−1

Σ is actually
single-valued over Ω = π(Σ).

Lemma 2.6. — Let Ω and Σ be as above. Then π|−1
Σ (z) consists of a

point for every z ∈ Ω.

Proof. — Suppose that, for some z ∈ Ω, there exist p, q ∈ Σ (p 6= q) such
that π(p) = π(q) = z. Since, by definition, Σ is connected, there exists an
arc γ̃ joining p and q. Denote γ = π ◦ γ̃ be the corresponding loop in Ω and
let B be a ball in Cz × Ru, centered at z, with a large enough radius such
that γ ⊂ B, τ ◦ γ̃ ⊂ B. Then

S ∩ τ−1(B) = Γ(ρ|B) ⊂ C2

is a hypersurface whose boundary is the graph

S ∩ τ−1(bB) = Γ(ρ|bB).

Since, by hypothesis, Σ is properly embedded in S∩τ−1(B) τ(Σ) is properly
embedded in B. By the choice of B, τ(p) and τ(q) belong to the same
connected component of τ(Σ) ∩ B, say Σ′. Lemma 3.2 in [11] states that

TOME 60 (2010), FASCICULE 2
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a connected surface of C×R, properly embedded in a convex domain and
which is locally a graph over C, is globally a graph. By Lemma 2.3 we have
that Σ′ is locally a graph over Cz; Since B is convex, we deduce that Σ′ is
globally a graph over some subdomain of Ω. Since τ(p) and τ(q) have the
same projection over Ω, it follows τ(p) = τ(q) and consequently p = q, a
contradiction. �

By Lemma 2.6, Σ is represented by the graph of a holomorphic function
u+ iv on Ω. The following is also a direct consequence of a Lemma in [11]:

Lemma 2.7. — Ω is simply connected.

Proof. — Observe that, if Ω is not simply connected, then D ∩ Ω is not
simply connected for some open disc D ⊂ Cz. Again, τ(Σ) is properly
embedded in some subdomain

D × (−R,R) ⊂ Cz × Ru, R� 0.

We recall that Lemma 3.3 in [11] states that, if a harmonic function defined
in a domain of C has a graph properly embedded (in a convex domain of
C× R) and admits a (single valued) harmonic conjugate, then its domain
of definition is simply connected. In our situation, τ(Σ) is the graph of u
over D ∩ Ω; The since v is a single-valued harmonic conjugate of U , we
obtain that D ∩ Ω is actually simply connected. �

2.3. Proof of Theorem 2.1

What is left to prove is that the projection Σ→ Cz is onto. Suppose, by
contradiction, that Ω ( Cz, and let z0 ∈ bΩ. The following result shows
that in fact z0 must belong to Ω at least in some special case.

Lemma 2.8. — Let z0 ∈ Cz and suppose that there exist p0 such that
π(p0) = z0 and p0 is a cluster point for Σ. Then z0 ∈ Ω.

Remark 2.9. — Since we do not know, at this stage, whether Σ is a
closed submanifold or not, it is a priori possible that p0 /∈ Σ. Nevertheless,
π−1(z0) ∩ Σ 6= ∅.

Proof of Lemma 2.8. — Let V be a neighborhood of p0 on which the
foliation of S ∩V is trivial. Then, either Σ∩V has finitely many connected
components - in this case one of them must contain p0 - or the connected
components of Σ ∩ V accumulate to the leaf Σ′ of S ∩ V containing p0.
Then Σ′ must be a complex leaf, too. Thus, from Lemma 2.3 it follows
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that, if V ′ b V (p0 ∈ V ′) is small enough, all the leaves of S ∩ V ′ intersect
(possibly in V ) π−1(z0). By hypothesis

V ′ ∩ Σ 6= ∅,

so Σ contains a leaf of S ∩ V ′ and consequently

π−1(z0) ∩ Σ 6= ∅. �

The previous lemma does not depend on π|−1
Σ being single-valued; How-

ever, since we know by Section 2.2 that it is the case, we will denote by
w(z) (resp. u(z),v(z)) the w-coordinates (resp. the u- and v-coordinate) of
π|−1

Σ (z). With these notations, we can state the following straightforward
corollary of Lemma 2.8:

Corollary 2.10. — Let z0 ∈ bΩ, and let {Uk}k∈N be a fundamental
system of neighborhoods of z0 in Cz. Then, for any M > 0 there exists
K ∈ N such that |w(z)| > M for all z ∈ Ω ∩ Uk with k > K.

Proof. — Otherwise, there would exist M > 0 and a sequence {zn}n∈N
such that

• zn ∈ Ω for every n ∈ N;
• zn → z0;
• For every n ∈ N there exists pn ∈ Σ such that π(pn) = zn and
|w(pn)| 6 M .

Then {pn}n∈N would admit an accumulation point p0 in C2 such that
π(p0) = z0. By Lemma 2.8 this would imply z0 ∈ Ω, a contradiction. �

Since, by the main hypothesis, v(z) is bounded on Ω, it follows immedi-
ately

Corollary 2.11. — Let z0 ∈ bΩ, and let {Uk}k∈N be a fundamental
system of neighborhoods of z0 in Cz. Then for any M > 0 there exists
K ∈ N such that |u(z)| > M for all z ∈ Ω ∩ Uk with k > K.

Remark 2.12. — Since Ω ∩ Uk need not be connected even for large k,
u could assume both signs in every neighborhood of z0. Later on we will
prove that it is not the case.

Lemma 2.13. — Let C be a connected component of the boundary of
Ω. Then there exist a neighborhood U of C in Ω such that either u > 0 on
U or u < 0 on U .

Proof. — Let K be a compact connected subset C, chosen in such a way
that C r K does not contain relatively compact connected components;
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It is enough to prove that the thesis holds for any such K. Observe that,
since Ω is connected, C r K has at most two connected components. By
Corollary 2.11, for any z ∈ K there exists a disc D(z, ε) such that |u| > 0
on D(z, ε) ∩ Ω. Cover K by discs {D1, . . . , Dk} and take δ so small that

U ′ =
{
z ∈ C : d(z,K) < δ

}
⊂ D1 ∪ · · · ∪Dk.

Then the thesis of the Lemma is a consequence of the following fact: There
is a connected component of U ′ ∩ Ω whose boundary contains K. Indeed,
suppose that this is not the case, and choose a connected component V of
U ′ ∩ Ω such that ∅ 6= E = bV ∩ K ( K. Observe that bV = E ∪ F ∪ G,
where

F = bV ∩
{
z ∈ C : d(z,K) = δ

}
and G = bV ∩ C rK;

Obviously E ∩ F = ∅ and thus G has at least two connected component.
Moreover, E is connected since otherwise CrK would have more than two
connected components. But if E ( K is connected then it can touch at most
one connected component of C rK and thus of G; It follows E = K. �

Corollary 2.14. — Let C be a connected component of bΩ. Then
there is a fundamental system {Vn}n∈N of neighborhoods of C in Ω such
that either

inf
Vn
u→ +∞ or sup

Vn
u→ −∞ as n→∞.

Proof. — This is a consequence of Corollary 2.11 and Lemma 2.13. �

Now we are in position to prove Theorem 2.1. Choose a point w ∈ C
and observe that, since Ω is simply connected by Section 2.2, there exists a
disc D = D(w, ε) such that DrC is disconnected; Moreover suppose, first,
that we can choose w and D in such a way that D r C is not contained
in Ω. Let

g = 1
u+ iv

;

Then g is well-defined and holomorphic on D ∩ Ω. Define a function
g̃ : D → C as

g̃(z) =

{
g(z), z ∈ Ω ∩D;
0, z ∈ D r Ω.

Then g̃ is continuous by Corollary 2.14. Moreover, by definition g̃ is holo-
morphic outside the set {g̃ = 0}; Therefore, by Rado’s Theorem, g̃ ∈ O(D).
Since the interior part of {g̃ = 0} is nonempty, we have g̃ ≡ 0 on D and
consequently g ≡ 0 on Ω, which is a contradiction. Suppose, then, that
for any choice of w and D we have D r C ⊂ Ω; By the same argument
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as before, we have that nevertheless the function g̃ defined as g in Ω and
0 in its complement is meromorphic (and not everywhere vanishing) on
all C, hence its null set is discrete. Since Ω is simply connected, the only
possibility is C r Ω = ∅, against our assumptions.

It follows that u cannot be unbounded on Ω. Then by Corollary 2.11 we
have that Ω = Cz and so π is onto. Lemma 2.6 implies that π is one to
one, therefore we can apply Lemma 2.4 and conclude that Σ = {w = c} for
some c ∈ C, whence the thesis of Theorem 2.1. �
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