A finiteness result for the compactly supported cohomology of rigid analytic varieties, II
Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 973-1017.

Let h:XY be a separated morphism of adic spaces of finite type over a non-archimedean field k with Y affinoid and of dimension 1, let L be a locally closed constructible subset of X and let g:(X,L)Y be the morphism of pseudo-adic spaces induced by h. Let A be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of k and let F be a constant A-module of finite type on (X,L) e ´t . There is a natural class 𝒞(Y) of A-modules on Y e ´t generated by the constructible A-modules and the Zariski-constructible A-modules. We show that, for every n 0 , the higher direct image sheaf with proper support R n g ! F is generically constructible, and if h is locally algebraic, R n g ! F is an element of 𝒞(Y). As an application we obtain a comparison isomorphism for the -adic cohomology of a separated scheme of finite type over k and its associated adic space.

Soit h:XY un morphisme séparé d’espaces adiques de type fini sur un corps non archimédien k avec Y affinoïde et de dimension 1. Soit L un sous-ensemble constructible localement fermé dans X et soit g:(X,L)Y le morphisme d’espaces pseudo-adiques induit de h. Soit A un anneau noethérien de torsion première à la caractéristique résiduelle de k et soit F un faisceau de A-modules localement constant de type fini sur (X,L) e ´t . Il y a une classe naturelle 𝒞(Y) des faisceaux de A-modules sur Y e ´t engendrée par des faisceaux de A-modules constructibles et des faisceaux de A-modules Zariski-constructibles. Nous montrons que le faisceau image directe à support propre R n g ! F est génériquement constructible, et si h est localement algébrique, R n g ! F est un élément de 𝒞(Y). En conséquence, on obtient un théorème de comparaison entre cohomologie -adique d’un schéma séparé de type fini sur k et de l’espace adique associé.

DOI: 10.5802/aif.2283
Classification: 14G22, 14F20
Keywords: Rigid analytic spaces, adic spaces, compactly supported cohomology
Mot clés : espace analytique rigide, espace adique, cohomologie à support compact

Huber, Roland 1

1 Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften Gaussstr. 20 42097 Wuppertal (Germany)
@article{AIF_2007__57_3_973_0,
     author = {Huber, Roland},
     title = {A finiteness result for the compactly supported cohomology of rigid analytic varieties, {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {973--1017},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {3},
     year = {2007},
     doi = {10.5802/aif.2283},
     mrnumber = {2336836},
     zbl = {1146.14015},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2283/}
}
TY  - JOUR
AU  - Huber, Roland
TI  - A finiteness result for the compactly supported cohomology of rigid analytic varieties, II
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 973
EP  - 1017
VL  - 57
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2283/
DO  - 10.5802/aif.2283
LA  - en
ID  - AIF_2007__57_3_973_0
ER  - 
%0 Journal Article
%A Huber, Roland
%T A finiteness result for the compactly supported cohomology of rigid analytic varieties, II
%J Annales de l'Institut Fourier
%D 2007
%P 973-1017
%V 57
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2283/
%R 10.5802/aif.2283
%G en
%F AIF_2007__57_3_973_0
Huber, Roland. A finiteness result for the compactly supported cohomology of rigid analytic varieties, II. Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 973-1017. doi : 10.5802/aif.2283. https://aif.centre-mersenne.org/articles/10.5802/aif.2283/

[1] Berkovich, V. G. Etale cohomology for p-adic analytic spaces (1994) (handwritten notes of a talk at Toulouse)

[2] Bourbaki, N. Commutative Algebra, Hermann, Paris, 1972 | MR

[3] Deligne, P.; Boutot, J.-F.; Illusie, L.; Verdier, J.-L. Cohomologie étale, Lecture Notes Math., 569, Springer, Berlin Heidelberg New York, 1977 | MR

[4] Freitag, E.; Kiehl, R. Etale cohomology and the Weil Conjecture, Springer, Berlin Heidelberg New York, 1988 | MR | Zbl

[5] Grothendieck, A. Éléments de Géométrie Algébrique, Publ. Math., Volume 11 (1961), pp. 167 | Numdam

[6] Grothendieck, A. Revêtements Étales et Groupe Fondamental, Lecture Notes Math., 224, Springer, Berlin Heidelberg New York, 1971 | MR

[7] Huber, R. Continuous valuations, Math. Z., Volume 212 (1993), pp. 445-477 | DOI | MR | Zbl

[8] Huber, R. A generalization of formal schemes and rigid analytic varieties, Math. Z., Volume 217 (1994), pp. 513-551 | DOI | MR | Zbl

[9] Huber, R. Etale Cohomology of Rigid Analytic Varieties and Adic Spaces, Vieweg, Braunschweig Wiesbaden, 1996 | MR | Zbl

[10] Huber, R. A comparison theorem for -adic cohomology, Compos. Math., Volume 112 (1998), pp. 217-235 | DOI | MR | Zbl

[11] Huber, R. A finiteness result for the compactly supported cohomology of rigid analytic varieties, J. Alg. Geom., Volume 7 (1998), pp. 313-357 | MR | Zbl

[12] Huber, R.; Knebusch, M. On valuation spectra, Contemporary Mathematics, Volume 115 (1994), pp. 167-206 | MR | Zbl

[13] Huber, Roland Bewertungsspektrum und rigide Geometrie, Regensburger Mathematische Schriften [Regensburg Mathematical Publications], 23, Universität Regensburg Fachbereich Mathematik, 1993 | MR | Zbl

[14] Kiehl, R. Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math., Volume 2 (1967), pp. 191-214 | DOI | MR | Zbl

[15] Köpf, Ursula Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) (1974) no. Heft 7, pp. iv+72 | MR

[16] Lütkebohmert, W. Riemann’s existence problem for a p-adic field, Invent. math., Volume 111 (1993), pp. 309-330 | DOI | MR | Zbl

[17] Lütkebohmert, W. The structure of proper p-adic groups, J. reine angew. Math., Volume 408 (1995), pp. 167-219 | DOI | MR | Zbl

[18] Ramero, L. Local monodromy in non-archimedean analytic geometry, Publ. Math., Volume 102 (2006), pp. 167-280 | DOI | Numdam | MR | Zbl

[19] Raynaud, M.; Gruson, L. Critères de platitude et de projectivité, Invent. math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl

[20] Serre, J.-P. Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Volume 6 (1956), pp. 1-42 | DOI | Numdam | MR | Zbl

[21] Strauch, M. Deformation spaces of one-dimensional formal modules and their cohomology (2006) (preprint)

Cited by Sources: