Une décomposition directe de [resp. ; ], algèbre des mesures d’un groupe localement compact [resp. mesures diffuses ; mesures dont la transformée de Fourier s’annule à l’infini] est obtenue ; l’application principale de cette décomposition est de démontrer que et que .
@article{AIF_1966__16_1_121_0, author = {Varopoulos, Nicolas Th.}, title = {A direct decomposition of the measure algebra of a locally compact abelian group}, journal = {Annales de l'Institut Fourier}, pages = {121--143}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, number = {1}, year = {1966}, doi = {10.5802/aif.228}, zbl = {0143.15801}, mrnumber = {34 #3227}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.228/} }
TY - JOUR AU - Varopoulos, Nicolas Th. TI - A direct decomposition of the measure algebra of a locally compact abelian group JO - Annales de l'Institut Fourier PY - 1966 SP - 121 EP - 143 VL - 16 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.228/ DO - 10.5802/aif.228 LA - en ID - AIF_1966__16_1_121_0 ER -
%0 Journal Article %A Varopoulos, Nicolas Th. %T A direct decomposition of the measure algebra of a locally compact abelian group %J Annales de l'Institut Fourier %D 1966 %P 121-143 %V 16 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.228/ %R 10.5802/aif.228 %G en %F AIF_1966__16_1_121_0
Varopoulos, Nicolas Th. A direct decomposition of the measure algebra of a locally compact abelian group. Annales de l'Institut Fourier, Tome 16 (1966) no. 1, pp. 121-143. doi : 10.5802/aif.228. https://aif.centre-mersenne.org/articles/10.5802/aif.228/
[1] Livre VI Intégration.
,[2] Utilisation des nombres réels en topologie générale, Livre III Topologie générale, ch. 9. | Zbl
,[3] Zbl
, Michigan Math. J., 5 (1958), 149-158. |[4] Fourier analysis on groups, Interscience Tract No. 12. | MR | Zbl
,[5] Produits Tensoriels Topologiques, etc., Séminaire (1953-1954), Faculté des Sciences de Paris. | Zbl
,[6] Homomorphisms on measure algebras, Illinois J. of Math., 5 (1961), 398-408. | MR | Zbl
,[7] The ideal space and Silov boundary of a subalgebra of measures on a group, J. Math. Anal. and Appl., 6 (1963), 266-276. | MR | Zbl
,[8] Sets of Multiplicity in locally compact abelian groups. (to appear). | Zbl
,[9] A theorem on the continuity of homomorphisms of locally compact groups, Proc. Camb. Phil. Soc. (1964), 60, 449. | MR | Zbl
,Cité par Sources :