[Au-delà des formules classiques de Weyl et de Colin de Verdière pour les opérateurs de Shrödinger avec des champs polynomiaux électriques et magnétiques.]
Nous donnons deux formules conjecturelles pour calculer le terme dominant du comportement asymptotique du spectre d’un opérateur de Schrödinger agissant dans
We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on
Keywords: Schrödinger operators, spectral asymptotics, orbit method, nilpotent Lie algebras
Mots-clés : opérateurs de Schrödinger, comportement asymptotique, la méthode des orbites, algèbre de Lie nilpotente
Boyarchenko, Mitya 1 ; Levendorski, Sergei 2
@article{AIF_2006__56_6_1827_0, author = {Boyarchenko, Mitya and Levendorski, Sergei}, title = {Beyond the classical {Weyl} and {Colin} de {Verdi\`ere{\textquoteright}s} formulas for {Schr\"odinger} operators with polynomial magnetic and electric fields}, journal = {Annales de l'Institut Fourier}, pages = {1827--1901}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {6}, year = {2006}, doi = {10.5802/aif.2229}, mrnumber = {2282677}, zbl = {1127.35028}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2229/} }
TY - JOUR AU - Boyarchenko, Mitya AU - Levendorski, Sergei TI - Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields JO - Annales de l'Institut Fourier PY - 2006 SP - 1827 EP - 1901 VL - 56 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2229/ DO - 10.5802/aif.2229 LA - en ID - AIF_2006__56_6_1827_0 ER -
%0 Journal Article %A Boyarchenko, Mitya %A Levendorski, Sergei %T Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields %J Annales de l'Institut Fourier %D 2006 %P 1827-1901 %V 56 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2229/ %R 10.5802/aif.2229 %G en %F AIF_2006__56_6_1827_0
Boyarchenko, Mitya; Levendorski, Sergei. Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields. Annales de l'Institut Fourier, Tome 56 (2006) no. 6, pp. 1827-1901. doi : 10.5802/aif.2229. https://aif.centre-mersenne.org/articles/10.5802/aif.2229/
[1] Répresentations
[2] Représentations des groupes de Lie résolubles, Monographies (4), Soc. Math. de France, 1972 | Zbl
[3] Paramétrisation du dual d’une algèbre de Lie nilpotente, Ann. Inst. Fourier, Volume 38 (1988) no. 3, pp. 169-197 | DOI | Numdam | MR | Zbl
[4] Generalizations of the classical Weyl and Colin de Verdière’s formulas and the orbit method, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 16, pp. 5663-5668 | DOI | MR
[5] L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986), pp. 327-335 | DOI | MR | Zbl
[6] Schrödinger operators with applications to quantum mechanics and global geometry, Springer-Verlag, Berlin, New York, Heidelberg, London, Paris, Tokyo, 1985 | Zbl
[7] The uncertainty principle, Bull. Amer. Math. Soc., Volume 9 (1983), pp. 129-206 | DOI | MR | Zbl
[8] One cannot hear the shape of a drum, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 134-138 | DOI | MR | Zbl
[9] Non-classical eigenvalue asymptotics for operators of Schrödinger type, Bull. Am. Math. Soc., Volume 15 (1986) no. 2, pp. 233-237 | DOI | MR | Zbl
[10] Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier, Grenoble, Volume 38 (1988) no. 2, pp. 95-112 | DOI | Numdam | MR | Zbl
[11] Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Math., Boston, 1985 | MR | Zbl
[12] The analysis of differential operators. 3, Springer-Verlag, Berlin, New York, Heidelberg, 1985 | Zbl
[13] Estimate for the number of negative eigenvalues of the Schrödinger operator with intense field, Journées Équations aux Dérivées partielles de Saint-Jean-de-Monts (1987) | Numdam | Zbl
[14] Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966), pp. 1-23 | DOI | MR | Zbl
[15] Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk, Volume 17 (1962) no. 4 (106), pp. 57-110 | MR | Zbl
[16] Introduction to the theory of diffusion processes, Translations of Mathematical Monographs (142), American Mathematical Society, Providence, RI, 1995 | MR | Zbl
[17] Non-classical spectral asymptotics, Russian Math. Surveys, Volume 43 (1988) no. 1, pp. 123-157 | DOI | Zbl
[18] Asymptotic distribution of eigenvalues of differential operators, Dordrecht: Kluwer Academic Publishers, 1990 | MR | Zbl
[19] Degenerate elliptic equations, Dordrecht: Kluwer Academic Publishers, 1993 | MR | Zbl
[20] Spectral properties of Schrödinger operators with irregular magnetic potentials, for a spin
[21] Spectral theory and representations of nilpotent groups, Bull. Amer. Math. Soc., Volume 26 (1992) no. 2, pp. 299-303 | DOI | MR | Zbl
[22] Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math., Volume 418 (1991), pp. 77-129 | DOI | MR | Zbl
[23] Weyl symbolic calculus on any Lie group, Acta Appl. Math., Volume 30 (1993) no. 2, pp. 159-186 | DOI | MR | Zbl
[24] Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie, Bull. Soc. Math. France, Volume 123 (1995) no. 1, pp. 117-138 | Numdam | MR | Zbl
[25] Distributions à support compact et représentations unitaires, J. Lie Theory, Volume 9 (1999) no. 2, pp. 403-424 | MR | Zbl
[26] Encadrement du
[27] Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Ark. Mat., Volume 5 (1965), pp. 527-540 | DOI | MR | Zbl
[28] Some growth and ramification properties of certain integrals on algebraic manifolds, Ark. Mat., Volume 5 (1965), pp. 463-476 | DOI | MR | Zbl
[29] On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications, part I, Math. Ann., Volume 281 (1988), pp. 633-669 | DOI | MR | Zbl
[30] On the theory of exponential groups, Trans. Amer. Math. Soc., Volume 126 (1967), pp. 487-507 | DOI | MR | Zbl
[31] Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4) (1971) no. 4, pp. 457-608 | Numdam | MR | Zbl
[32] Comportement asymptotique des valeurs propres d’opérateurs de type Schrödinger à potentiel “dégénéré”, J. Math. Pures Appl., Volume 61 (1982), pp. 275-300 | MR | Zbl
[33] Asymptotic behavior of the eigenvalues of the Schrödinger operator, Mat. Sb. (N.S.), Volume 93 (1974) no. 135, p. 347-367, 487 | MR | Zbl
[34] Spectral theory of differential operators, Contemporary problems of mathematics, Volume 64, Itogi Nauki i Tekhniki VINITI, Moscow: VINITI, 1989 | MR | Zbl
[35] Nonclassical eigenvalue asymptotics, J. Funct.Anal., Volume 53 (1983) no. 1, pp. 84-98 | DOI | MR | Zbl
[36] Asymptotics of the spectrum of the Schrödinger operator with non-regular homogeneous potential, Math. USSR Sbornik, Volume 55 (1986) no. 1, pp. 19-37 | DOI | Zbl
[37] Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J., Volume 105 (1987), pp. 49-69 | MR | Zbl
[38] The asymptotic distribution of the eigenvalues of pseudodifferential operators in
[39] La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente, Bull. SMF, Volume 100 (1972), pp. 301-335 | Numdam | MR | Zbl
- Uncertainty principles for magnetic structures on certain coadjoint orbits, Journal of Geometry and Physics, Volume 60 (2010) no. 1, p. 81 | DOI:10.1016/j.geomphys.2009.09.007
- Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups, Annals of Global Analysis and Geometry, Volume 36 (2009) no. 3, p. 293 | DOI:10.1007/s10455-009-9166-8
Cité par 2 documents. Sources : Crossref