Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces
Annales de l'Institut Fourier, Volume 56 (2006) no. 5, pp. 1419-1456.

This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.

Cet article est consacré à la preuve de résultats d’existence presque globale pour des équations de Klein-Gordon sur des hypersurfaces compactes de révolution avec des non-linéarités non hamiltoniennes, lorsque les données sont petites, régulières et radiales. La méthode repose sur l’utilisation de formes normales et sur le fait que les valeurs propres associées à des fonctions propres radiales du Laplacien sont simples et vérifient des propriétés de séparation convenables.

DOI: 10.5802/aif.2217
Classification: 35L70, 58J47
Keywords: Almost global solutions, nonlinear Klein-Gordon equation, radial hypersurfaces
Mot clés : solutions presque globales, équation non-linéaire de Klein-Gordon, hypersurfaces radiales
Delort, Jean-Marc 1; Szeftel, Jérémie 2

1 Université Paris-Nord, Institut Galilée UMR CNRS 7539 Laboratoire Analyse Géométrie et Applications 99, Avenue J.-B. Clément 93430 Villetaneuse (France)
2 Princeton University Department of Mathematics Fine Hall, Washington Road Princeton NJ 08544-1000 (USA) and Université Bordeaux 1, UMR CNRS 5466 Mathématiques Appliquées de Bordeaux 351 cours de la Libération 33405 Talence cedex (France)
@article{AIF_2006__56_5_1419_0,
     author = {Delort, Jean-Marc and Szeftel, J\'er\'emie},
     title = {Bounded almost global solutions for non hamiltonian semi-linear {Klein-Gordon} equations with radial data on compact revolution hypersurfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1419--1456},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {5},
     year = {2006},
     doi = {10.5802/aif.2217},
     mrnumber = {2273861},
     zbl = {1115.35084},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2217/}
}
TY  - JOUR
AU  - Delort, Jean-Marc
AU  - Szeftel, Jérémie
TI  - Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 1419
EP  - 1456
VL  - 56
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2217/
DO  - 10.5802/aif.2217
LA  - en
ID  - AIF_2006__56_5_1419_0
ER  - 
%0 Journal Article
%A Delort, Jean-Marc
%A Szeftel, Jérémie
%T Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces
%J Annales de l'Institut Fourier
%D 2006
%P 1419-1456
%V 56
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2217/
%R 10.5802/aif.2217
%G en
%F AIF_2006__56_5_1419_0
Delort, Jean-Marc; Szeftel, Jérémie. Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces. Annales de l'Institut Fourier, Volume 56 (2006) no. 5, pp. 1419-1456. doi : 10.5802/aif.2217. https://aif.centre-mersenne.org/articles/10.5802/aif.2217/

[1] Bambusi, D. Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., Volume 234 (2003) no. 2, pp. 253-285 | DOI | MR | Zbl

[2] Bambusi, D.; Grébert, B. Birkhoff normal form for PDEs with tame modulus (2004) (preprint)

[3] Bourgain, J. Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., Volume 6 (1996) no. 2, pp. 201-230 | DOI | MR | Zbl

[4] Delort, J.-M. Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4), Volume 34 (2001) no. 1, pp. 1-61 (Erratum, to appear, Ann. Sci. École Norm. Sup.) | Numdam | MR | Zbl

[5] Delort, J.-M.; Szeftel, J. Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds (to appear Amer. J. Math.) | Zbl

[6] Delort, J.-M.; Szeftel, J. Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., Volume 37 (2004), pp. 1897-1966 | DOI | MR | Zbl

[7] Eastham, M. S. P. The spectral theory of periodic differential equations, Scottish Academic Press (1973), pp. x+130 | Zbl

[8] Klainerman, S. The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics, Volume 23 (1986), pp. 293-326 | MR | Zbl

[9] Moriyama, K. Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one-space dimension, Diff. Int. Equations, Volume 10 (1997) no. 3, pp. 499-520 | MR | Zbl

[10] Shatah, J. Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696 | DOI | MR | Zbl

[11] Sunagawa, H. Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms (2004) (preprint) | MR | Zbl

Cited by Sources: