Sets of k-recurrence but not (k+1)-recurrence
Annales de l'Institut Fourier, Volume 56 (2006) no. 4, pp. 839-849.

For every k, we produce a set of integers which is k-recurrent but not (k+1)-recurrent. This extends a result of Furstenberg who produced a 1-recurrent set which is not 2-recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.

Pour tout nombre entier k>0, nous construisons un ensemble d’entiers qui est un ensemble de récurrence multiple à l’ordre k mais pas à l’ordre k+1. Cela étend une construction de Furstenberg qui a construit un ensemble de récurrence qui n’est pas un ensemble de 2-récurrence. Nous obtenons un résultat similaire pour la convergence des moyennes ergodiques multiples. Comme conséquence de notre construction, nous exhibons aussi un résultat combinatoire relié au théorème de Szemerédi.

DOI: 10.5802/aif.2202
Classification: 38A, 11B
Keywords: Ergodic theory, recurrence, multiple recurrence, combinatorial additive number theory
Mot clés : théorie ergodique, récurrence, récurrence multiple, combinatoire additive des nombres
Frantzikinakis, Nikos 1; Lesigne, Emmanuel 2; Wierdl, Máté 3

1 Pennsylvania State University Department of Mathematics McAllister Building University Park, PA 16802 (USA)
2 Université François Rabelais de Tours Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Faculté des Sciences et Techniques Parc de Grandmont 37200 Tours (France)
3 University of Memphis Department of Mathematical Sciences Memphis, TN 38152 (USA)
@article{AIF_2006__56_4_839_0,
     author = {Frantzikinakis, Nikos and Lesigne, Emmanuel and Wierdl, M\'at\'e},
     title = {Sets of $k$-recurrence but not $(k+1)$-recurrence},
     journal = {Annales de l'Institut Fourier},
     pages = {839--849},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {4},
     year = {2006},
     doi = {10.5802/aif.2202},
     mrnumber = {2266880},
     zbl = {1123.37001},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2202/}
}
TY  - JOUR
AU  - Frantzikinakis, Nikos
AU  - Lesigne, Emmanuel
AU  - Wierdl, Máté
TI  - Sets of $k$-recurrence but not $(k+1)$-recurrence
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 839
EP  - 849
VL  - 56
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2202/
DO  - 10.5802/aif.2202
LA  - en
ID  - AIF_2006__56_4_839_0
ER  - 
%0 Journal Article
%A Frantzikinakis, Nikos
%A Lesigne, Emmanuel
%A Wierdl, Máté
%T Sets of $k$-recurrence but not $(k+1)$-recurrence
%J Annales de l'Institut Fourier
%D 2006
%P 839-849
%V 56
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2202/
%R 10.5802/aif.2202
%G en
%F AIF_2006__56_4_839_0
Frantzikinakis, Nikos; Lesigne, Emmanuel; Wierdl, Máté. Sets of $k$-recurrence but not $(k+1)$-recurrence. Annales de l'Institut Fourier, Volume 56 (2006) no. 4, pp. 839-849. doi : 10.5802/aif.2202. https://aif.centre-mersenne.org/articles/10.5802/aif.2202/

[1] Bergelson, V. Weakly mixing PET, Ergodic Theory Dynamical Systems, Volume 7 (1987) no. 3, pp. 337-349 | MR | Zbl

[2] Bergelson, V. Ergodic Ramsey theory-an update, Ergodic Theroy of d -actions, Cambridge University Press, Cambridge, 1996, pp. 1-61 | MR | Zbl

[3] Furstenberg, H. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., Volume 71 (1977), pp. 204-256 | DOI | MR | Zbl

[4] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981 (M. B. Porter Lectures) | MR | Zbl

[5] Furstenberg, H.; Katznelson, Y. An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math., Volume 34 (1979), pp. 275-291 | DOI | MR | Zbl

[6] Furstenberg, H.; Katznelson, Y.; Ornstein, D. The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.), Volume 7 (1982) no. 3, pp. 527-552 | DOI | MR | Zbl

[7] Host, B.; Kra, B. Nonconventional ergodic averages and nilmanifolds, Annals of Math, Volume 161 (2005) no. 1, pp. 397-488 | DOI | MR | Zbl

[8] Katznelson, Y. Chromatic numbers of Cayley graphs on and recurrence, Combinatorica, Volume 21 (2001) no. 2, pp. 211-219 Paul Erdős and his mathematics (Budapest, 1999) | DOI | MR | Zbl

[9] Ziegler, Tamar Universal Characteristic Factors and Furstenberg Averages, http://www.arxiv.org/abs/math.DS/0403212 (To appear in Journal of the AMS)

Cited by Sources: