For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.
Pour un algébroïde de Lie, le choix des divergences à la mode classique donne une théorie de l’homologie unique. Elles définissent aussi naturellement les classes modulaires de quelques morphismes des algébroïdes de Lie. Cette méthode, appliquée à l’application d’ancre, nous permet de retrouver la classe modulaire due à S. Evens, J.-H. Lu, et A. Weinstein.
Keywords: Lie algebroid, de Rham cohomology, Poincaré duality, divergence
Mot clés : algébroïde de Lie, cohomologie de de Rham, dualité de Poincaré, divergence
@article{AIF_2006__56_1_69_0, author = {Grabowski, Janusz and Marmo, Giuseppe and Michor, Peter W.}, title = {Homology and modular classes of {Lie} algebroids}, journal = {Annales de l'Institut Fourier}, pages = {69--83}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2172}, mrnumber = {2228680}, zbl = {1141.17018}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2172/} }
TY - JOUR AU - Grabowski, Janusz AU - Marmo, Giuseppe AU - Michor, Peter W. TI - Homology and modular classes of Lie algebroids JO - Annales de l'Institut Fourier PY - 2006 SP - 69 EP - 83 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2172/ DO - 10.5802/aif.2172 LA - en ID - AIF_2006__56_1_69_0 ER -
%0 Journal Article %A Grabowski, Janusz %A Marmo, Giuseppe %A Michor, Peter W. %T Homology and modular classes of Lie algebroids %J Annales de l'Institut Fourier %D 2006 %P 69-83 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2172/ %R 10.5802/aif.2172 %G en %F AIF_2006__56_1_69_0
Grabowski, Janusz; Marmo, Giuseppe; Michor, Peter W. Homology and modular classes of Lie algebroids. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 69-83. doi : 10.5802/aif.2172. https://aif.centre-mersenne.org/articles/10.5802/aif.2172/
[1] Chern characters via connections up to homotopy (arXiv: math.DG/0009229)
[2] Variétés différentiables, Hermann, Paris, 1955 | Zbl
[3] Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., Oxford Ser. 2, Volume 50 (1999) no. 2, pp. 417-436 | DOI | MR | Zbl
[4] Lie algebroids, holonomy and characteristic classes, Adv. Math., Volume 170 (2000), pp. 119-179 | DOI | MR | Zbl
[5] Quasi-derivations and QD-algebroids, Rep. Math. Phys., Volume 52 (2003), pp. 445-451 | DOI | MR | Zbl
[6] Jacobi structures revisited, J. Phys. A: Math. Gen., Volume 34 (2001), pp. 10975-10990 | DOI | MR | Zbl
[7] The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., Volume 36 (2003), pp. 161-181 | DOI | MR | Zbl
[8] Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier, Volume 48 (1998), pp. 425-440 | DOI | Numdam | MR | Zbl
[9] Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., Volume 40 (2001), pp. 176-199 | DOI | MR | Zbl
[10] Modular vector fields and Batalin-Vilkovisky algebras, Poisson Geometry (Banach Center Publications), Volume 51, Warszawa, 2000, pp. 109-129 | MR | Zbl
[11] Differential operators and actions of Lie algebroids, Contemp. Math., Volume 315 (2002), pp. 213-233 | MR | Zbl
[12] Divergence operators and odd Poisson brackets, Ann. Inst. Fourier, Volume 52 (2002), pp. 419-456 | DOI | Numdam | MR | Zbl
[13] Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Astérisque), Volume hors série (1985), pp. 257-271 | MR | Zbl
[14] Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 1987 | MR | Zbl
[15] Tensor analysis, Princeton University Press, 1967 | Zbl
[16] The modular automorphism group of a Poisson manifold, J. Geom. Phys., Volume 23 (1997), pp. 379-394 | DOI | MR | Zbl
[17] Supersymmetry and Morse theory, J. Diff. Geom., Volume 17 (1982), pp. 661-692 | MR | Zbl
[18] Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys., Volume 200 (1999), pp. 545-560 | DOI | MR | Zbl
Cited by Sources: