Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.
Motivés par la théorie de la supraconductivité et plus précisément par le problème de l’apparition de la supraconductivité à la surface, de nombreux articles ont été consacrés récemment à l’analyse semi-classique de la plus petite valeur propre de l’opérateur de Schrödinger avec champ magnétique (Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg, Helffer-Morame et aussi Bauman-Phillips-Tang pour le cas du disque). Dans cet article, nous proposons des asymptotiques complètes pour les premières valeurs propres dans le cas d’un domaine de dont la courbure du bord n’a qu’un unique maximum non-dégénéré.
Keywords: semi-classical analysis, supraconductivity, Neumann Laplacian, magnetic Laplacian
Mot clés : analyse semi-classique, supraconductivité, laplacien de Neumann, laplacien magnétique
@article{AIF_2006__56_1_1_0, author = {Fournais, Soeren and Helffer, Bernard}, title = {Accurate eigenvalue asymptotics for the magnetic {Neumann} {Laplacian}}, journal = {Annales de l'Institut Fourier}, pages = {1--67}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2171}, mrnumber = {2228679}, zbl = {1097.47020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2171/} }
TY - JOUR AU - Fournais, Soeren AU - Helffer, Bernard TI - Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian JO - Annales de l'Institut Fourier PY - 2006 SP - 1 EP - 67 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2171/ DO - 10.5802/aif.2171 LA - en ID - AIF_2006__56_1_1_0 ER -
%0 Journal Article %A Fournais, Soeren %A Helffer, Bernard %T Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian %J Annales de l'Institut Fourier %D 2006 %P 1-67 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2171/ %R 10.5802/aif.2171 %G en %F AIF_2006__56_1_1_0
Fournais, Soeren; Helffer, Bernard. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 1-67. doi : 10.5802/aif.2171. https://aif.centre-mersenne.org/articles/10.5802/aif.2171/
[1] Lectures on exponential decay of solutions of second order elliptic equations, Math. Notes, 29, Princeton University Press, 1982 | MR | Zbl
[2] Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., Volume 142 (1998), pp. 1-43 | DOI | MR | Zbl
[3] Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Volume 39 (1998), pp. 1272-1284 | DOI | MR | Zbl
[4] An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré (Section Physique Théorique), Volume 58 (1993) no. 2, pp. 169-233 | Numdam | MR | Zbl
[5] Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques, Université Paris 11 (2003) (Ph. D. Thesis)
[6] On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptotic Anal., Volume 41 (2005) no. 3-4, pp. 215-258 | MR | Zbl
[7] Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners (2005) (preprint)
[8] Schrödinger Operators, Springer Verlag, Berlin, 1987 | Zbl
[9] Eigenvalues variation I, Neumann problem for Sturm-Liouville operators, J. Differential Equations, Volume 104 (1993) no. 2, pp. 243-262 | DOI | MR | Zbl
[10] Spectral Asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999 | MR | Zbl
[11] Energy asymptotics for type II superconductors (2004) (preprint) | MR | Zbl
[12] Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Mat. Sb. (N.S.), Volume 88 (1972) no. 130, pp. 504-521 (russian) | Zbl
[13] Introduction to the semiclassical analysis for the Schrödinger operator and applications, Lecture Notes in Math., 1336, Springer Verlag, 1988 | Zbl
[14] Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Volume 138 (1996) no. 1, pp. 40-81 | DOI | MR | Zbl
[15] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl
[16] Magnetic bottles for the Neumann problem : curvature effect in the case of dimension 3 (General case), Ann. Sci. École Norm. Sup., Volume 37 (2004), pp. 105-170 | Numdam | MR | Zbl
[17] Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré (Section Analyse non linéaire), Volume 20 (2003) no. 1, pp. 145-181 | DOI | Numdam | MR | Zbl
[18] Multiple wells in the semiclassical limit I, Comm. Partial Differential Equations, Volume 9 (1984) no. 4, pp. 337-408 | DOI | MR | Zbl
[19] Puits multiples en limite semi-classique II – Interaction moléculaire – Symétries – Perturbations, Ann. Inst. H. Poincaré (Section Physique théorique), Volume 42 (1985) no. 2, pp. 127-212 | Numdam | MR | Zbl
[20] Puits multiples en limite semiclassique V – le cas des minipuits, Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 133-186 | Zbl
[21] Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Ann. Scuola Norm. Sup. Pisa, Volume 14 (1987) no. 4, pp. 625-657 | Numdam | MR | Zbl
[22] Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., Volume 40 (1999) no. 6, pp. 2647-2670 | DOI | MR | Zbl
[23] Estimates of the upper critical field for the equations of superconductivity, Physica D, Volume 127 (1999), pp. 73-104 | DOI | MR | Zbl
[24] Gauge invariant eigenvalue problems on and , Trans. Amer. Math. Soc., Volume 352 (2000) no. 3, pp. 1247-1276 | DOI | MR | Zbl
[25] Surface nucleation of superconductivity in -dimension, J. of Differential Equations, Volume 168 (2000) no. 2, pp. 386-452 | DOI | MR | Zbl
[26] Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Volume 210 (2000), pp. 413-446 | DOI | MR | Zbl
[27] Methods of modern Mathematical Physics, IV: Analysis of operators, Academic Press, New York, 1978 | MR | Zbl
[28] Autour de l’approximation semi-classique, Birkhäuser, Boston, 1987 | MR | Zbl
[29] Type II Superconductivity, Pergamon, Oxford, 1969
[30] Semi-classical analysis of low lying eigenvalues I, Ann. Inst. H. Poincaré (Section Physique Théorique), Volume 38 (1983) no. 4, pp. 295-307 | Numdam | MR | Zbl
[31] Operators of principal type with interior boundary conditions, Acta Math., Volume 130 (1973), pp. 1-51 | DOI | MR | Zbl
[32] On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields, Connectivity and Superconductivity (Lect. Notes in Physics), Volume M 62, Springer Verlag, 2000, pp. 188-199 | Zbl
[33] Superfluidity and superconductivity, Institute of Physics Publishing, Bristol and Philadelphia, 1990
[34] Introduction to Superconductivity, McGraw-Hill Inc, New York, 1975
Cited by Sources: