Let be an open neighborhood of the origin in and let be complex analytic. Let be a generic linear form on . If the relative polar curve at the origin is irreducible and the intersection number is prime, then there are severe restrictions on the possible degree cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when is not prime.
Soit un voisinage ouvert de l’origine dans et soit une fonction analytique complexe. Soit une forme linéaire générale sur . Si la courbe polaire relative à l’origine est irréductible et le nombre d’intersection est premier, alors cela impose des contraintes très fortes sur la valeur du rang de la -ième cohomologie de la fibre de Milnor à l’origine. Nous obtenons aussi des résultats intéressants, mais plus faibles quand n’est pas premier.
Keywords: Carrousel, polar curve, monodromy, Milnor fiber
Mot clés : carrousel, courbe polaire, monodromie, fibre de Milnor
@article{AIF_2006__56_1_85_0, author = {Massey, David B.}, title = {Semi-simple {Carrousels} and the {Monodromy}}, journal = {Annales de l'Institut Fourier}, pages = {85--100}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2173}, mrnumber = {2228681}, zbl = {1102.32013}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2173/} }
TY - JOUR AU - Massey, David B. TI - Semi-simple Carrousels and the Monodromy JO - Annales de l'Institut Fourier PY - 2006 SP - 85 EP - 100 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2173/ DO - 10.5802/aif.2173 LA - en ID - AIF_2006__56_1_85_0 ER -
%0 Journal Article %A Massey, David B. %T Semi-simple Carrousels and the Monodromy %J Annales de l'Institut Fourier %D 2006 %P 85-100 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2173/ %R 10.5802/aif.2173 %G en %F AIF_2006__56_1_85_0
Massey, David B. Semi-simple Carrousels and the Monodromy. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 85-100. doi : 10.5802/aif.2173. https://aif.centre-mersenne.org/articles/10.5802/aif.2173/
[1] Le nombre de Lefschetz d’une monodromie, Indag. Math., Volume 35 (1973), pp. 113-118 | MR | Zbl
[2] Variation of the Milnor Fibration in Pencils of Hypersurface Singularities, Proc. London Math. Soc. (3), Volume 83 (2001), pp. 330-350 | DOI | MR | Zbl
[3] Calcul du Nombre de Cycles Évanouissants d’une Hypersurface Complexe, Ann. Inst. Fourier, Grenoble, Volume 23 (1973), pp. 261-270 | DOI | Numdam | MR | Zbl
[4] La Monodromie n’a pas de Points Fixes, J. Fac. Sci. Univ. Tokyo, Sec. 1A, Volume 22 (1975), pp. 409-427 | MR | Zbl
[5] The Geometry of the Monodromy Theorem, in C. P. Ramanujam, a tribute, Collect. Publ. of C. P. Ramanujam and pap. in his mem., 8, Tata Inst. Fundam. Res., Studies in Math., 1978 | Zbl
[6] Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten, Math. Ann., Volume 222 (1976), pp. 71-88 | DOI | MR | Zbl
[7] Hypersurface Singularities and Milnor Equisingularity (2005) (preprint)
[8] Sur la Fibre de Milnor d’une Singularité Isolée en Dimension Complexe Trois, C.R. Acad. Sci., Volume 289 (1979), pp. 115-118 | Zbl
[9] Lê Cycles and Hypersurface Singularities, Lecture Notes in Mathematics, Volume 1615 (1995) | MR | Zbl
[10] The Sebastiani-Thom Isomorphism in the Derived Category, Compos. Math., Volume 125 (2001), pp. 353-362 | DOI | MR | Zbl
[11] The Nexus Diagram and Integral Restrictions on the Monodromy (2004) (to appear in J. London Math. Soc.)
[12] Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, Volume 61 (1968) | MR | Zbl
[13] Isolated Line Singularities, Proc. Symp. Pure Math., Volume 40 (1983) no. 2, pp. 485-496 | MR | Zbl
[14] Cycles évanescents, sections planes et conditions de Whitney, Astérisque, Volume 7-8 (1973), pp. 285-362 | MR | Zbl
[15] The Lefschetz Number of a Monodromy Transformation, University of Utrecht (1992) (Ph. D. Thesis) | Zbl
[16] Carrousel monodromy and Lefschetz number of Singularities, Enseign. Math. (2), Volume 39 (1993), pp. 233-247 | MR | Zbl
Cited by Sources: