A Markov process converging to a random state of the 6-vertex model is constructed. It is used to show that a droplet of c-vertices is created in the antiferromagnetic phase and that the shape of this droplet has four cusps.
Nous construisons un processus de Markov qui converge vers un état aléatoire du modèle 6- vertex. Ensuite, nous l’utilisons pour faire apparaître la création dans la phase antiferromagnétique d’une goutelette constituée de sommets de type et dont la forme possède 4 pointes.
Keywords: 6-vertex, Markov chain, random sampling, Monte Carlo
Mot clés : 6-vertex, chaîne de Markov, échantillonnage aléatoire, Monte Carlo
Allison, David 1; Reshetikhin, Nicolai 
@article{AIF_2005__55_6_1847_0, author = {Allison, David and Reshetikhin, Nicolai}, title = {Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions}, journal = {Annales de l'Institut Fourier}, pages = {1847--1869}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2144}, zbl = {02230060}, mrnumber = {2187938}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2144/} }
TY - JOUR AU - Allison, David AU - Reshetikhin, Nicolai TI - Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions JO - Annales de l'Institut Fourier PY - 2005 SP - 1847 EP - 1869 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2144/ DO - 10.5802/aif.2144 LA - en ID - AIF_2005__55_6_1847_0 ER -
%0 Journal Article %A Allison, David %A Reshetikhin, Nicolai %T Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions %J Annales de l'Institut Fourier %D 2005 %P 1847-1869 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2144/ %R 10.5802/aif.2144 %G en %F AIF_2005__55_6_1847_0
Allison, David; Reshetikhin, Nicolai. Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 1847-1869. doi : 10.5802/aif.2144. https://aif.centre-mersenne.org/articles/10.5802/aif.2144/
[1] The shape of a typical boxed plane partition, New York J. Math., Volume 4 (1998), pp. 137-165 | MR | Zbl
[2] Local statistics of random domino tilings of the Aztec diamons, Duke Math. J., Volume 85 (1996), pp. 117-166 | MR | Zbl
[3] Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego, 1982 | MR | Zbl
[4] Diamond Ice, J. Statist. Phys., Volume 96 (1999) no. 5-6, pp. 1091-1109 | MR | Zbl
[5] Partition function of the 6-vertex model in a finite volume, Sov. Phys. Dokl., Volume 32 (1987), pp. 878-879 | Zbl
[6] An introduction to the dimer models (math.CO/0310326, http://arxiv.org/abs/math.CO/0310326) | Zbl
[7] Thermodynamic limit of the six-vertex model withdomain wall boundary conditions (condmat/0004250, http://arxiv.org/abs/cond-mat/0004250) | Zbl
[8] Calculation of norms of Bethe wave functions, Comm. Math. Phys., Volume 86 (1982) no. 3, pp. 391-418 | DOI | MR | Zbl
[9] Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Notes, Volume 3 (1996), pp. 139-150 | MR | Zbl
[10] Two dimensional ferroelectric models, Phase transitions and critical phenomena (1972)
[11] Dimers and amoebae (mathph/0311005, http://arxiv.org/abs/math-ph/0311005) | Zbl
[12] Random skew plane partitions and the Pearcey process (math.CO/0503508, http://arxiv.org/abs/math.CO/0503508)
[13] Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl
[14] Coupling from the past: a user's guide, Microsurveys in Discrete Probability (Princeton, NJ, 1997) (DIMACS Ser. Discrete Math. Theoret. Comp. Sci.), Volume 41 (1998), pp. 181-192 | Zbl
[15] Algorithms for Random Generation and Counting, Birkhauser, Boston, 1993 | MR | Zbl
[16] Directed-loop Monte Carlo simulations of vertex models (cond-mat/0401491)
[17] Combinatorial structure of the ground state of O(1) loop model (math.CO/0104216, http://arxiv.org/abs/math.CO/0104216)
[18] Asymptotic combinatorics withapplications to mathematical physics, (ed. by A.M. Vershik), 1815, Springer, 2003 | Zbl
[19] Six-vertex model with domain wall boundary conditions and one-matrix model, Phys. Rev. E, Volume 62 (2000) no. 3, part A, pp. 3411-3418 | DOI | MR
[20] On the counting of fully packed loop configurations. Some new conjectures (math-ph/0309057, http://arxiv.org/abs/math-ph/0309057) | Zbl
Cited by Sources: