
ANNA
LE

S
 D

E

 L’INSTITUT 
FO

U
RIER

ANNALES
DE

L’INSTITUT FOURIER

David ALLISON & Nicolai RESHETIKHIN

Numerical study of the 6-vertex model with domain wall boundary
conditions
Tome 55, no 6 (2005), p. 1847-1869.

<http://aif.cedram.org/item?id=AIF_2005__55_6_1847_0>

© Association des Annales de l’institut Fourier, 2005, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2005__55_6_1847_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
55, 6 (2005), 1847–1869

NUMERICAL STUDY OF THE 6-VERTEX MODEL

WITH DOMAIN WALL BOUNDARY CONDITIONS

by David ALLISON (*) & Nicolai RESHETIKHIN (**)

Introduction.

It is well known that the 6-vertex model with periodical boundary
conditions has phase transitions. The history and the classification of phases
in the 6-vertex model as well as many interesting facts about the structure
of the partition function of the 6-vertex model with periodic boundary
conditions can be found in [10], [3]. The 6-vertex model is solvable in the
sense that row-to-row transformations can be diagonalized by the Bethe
ansatz. These transformations form a commutative family and the local
Boltzmann weights satisfy the Yang-Baxter equation [3].

There is an important function of Boltzmann weights of the model
which is usually denoted by ∆ (see [3], [10] and Section 3). The 6-
vertex model with periodic boundary conditions has three phases in
the thermodynamic limit, depending on the value of ∆. One is the
totally ordered (frozen) phase, with ∆ > 1, the second is the disordered
(critical) phase, with |∆| < 1, and the third is the partially ordered
(antiferromagnetic) phase with ∆ < −1. The 6-vertex model can be used
to describe electric or magnetic properties of crystals. Here we assume it
is a model for magnetic properties. In [10] and many other papers it is
regarded as a model for electric properties, so there are minor differences
in terminology.

(*) The work of D. Allison was partly supported by the NSF grant DMS-0354321.
(**) The work of N. Reshetikhin was partly supported by the NSF grant DMS-0307599
and by the Humboldt Foundation.
Keywords: 6-vertex, Markov chain, random sampling, Monte Carlo.
Math.classification: 82-08, 88B20, 82B23.
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The 6-vertex model with domain wall boundary conditions on a square
N×N grid was perhaps first considered in [8] in the process of computation
of norms of Bethe vectors. The partition function of this system can be
written as the determinant of a certain N ×N matrix [5]. Its asymptotics
in the thermodynamic limit N → ∞ were analyzed in [7]. It is related
to matrix models, which was pointed out and exploited in [19]. But still,
relatively little is known about this model.

The 6-vertex model with ∆ = 1
2 is also known as the ice-model. This

model with domain wall (DW) boundary conditions is closely related to the
enumeration of alternating sign matrices [9]. It also has other interesting
combinatorial features (see for example [17], [20]). When ∆ = 0 the 6-vertex
model is equivalent to the problem of counting of weighted tilings of the
Aztec diamond (see for example [7], [6] and references therein).

The spatial coexistence theory of different phases and the interfaces
separating phases is an important part of statistical mechanics. Growth of
crystals is one of the well known phenomena of this type. Limit shape effect
in statistics of Young diagrams [18] and plane partitions [12], [13] are other
closely related subjects.

In dimer models related to enumeration of plane partitions and domino
tilings, the interface between the disordered and totally ordered phases is
also known as an arctic circle phenomenon [1]. In these models the limit
shapes or interfaces (curves separating phases), under broad conditions, are
real algebraic curves [11]. Since at ∆ = 0 the 6-vertex model is equivalent
to a dimer model these results imply that such a phenomenon exists in
the 6-vertex model for ∆ = 0. The natural question is whether the spatial
coexistence of phases happens only at the free fermionic point or if it occurs
for all values of ∆. Numerical evidence suggesting the existence of a limit
shape in the 6-vertex model with domain wall boundary conditions for all
weights was obtained in [16].

Here we report results of numerical study of the 6-vertex model
with DW boundary conditions in all phases of the model. Our method
is different from [16]. To generate a random configuration in the 6-vertex
model we construct the Markov process which is equivalent to a random
weighted walk on the graph where the vertices are states of the model
and edges are local moves which transform states into other states. This
process satisfies the detailed balance condition and therefore converges
to the Gibbs state of the 6-vertex model. Our process is also known as
a Monte-Carlo process with local updates and as a heat-bath algorithm.

ANNALES DE L’INSTITUT FOURIER
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In statistical mechanics such processes are known as Kawasaki, or Glauber
dynamics.

Since our goal was to collect “visual” evidence of the formation of
the limit shape and qualitative information about it, we used a rather
crude way to estimate the running time of Markov process. Specifically,
we started computation simultaneously from the high and from the low
height functions and we ran the simulation until a random state in the
first process became visually indistinguishable from a random state in the
second process. Clearly this would not be enough for any quantitative
computations where a numerical error estimate is desired. We plan to
address this in the future using the perfect sampling algorithm known as
the “coupling from the past”, see [14].

Our results confirm the conclusion from [4] and [16] that there is a
coexistence of ordered and disordered phases in the 6-vertex model. They
also clearly indicate that for ∆ < −1 there is a coexistence of all three
phases. The outer layer is an ordered phase. It is followed by a ring of
the disordered phase vertices. Finally, there is an inner droplet of the
antiferromagnetic phase. This phenomenon was first conjectured in [16]
using a different numerical method. The shape of the inner droplet has
four cusps and is reminiscent of one of the limit shapes for dimers on a
square-octagon grid (see [11]) equivalent to the diablo tiling.

Acknowledgments. — We are grateful to R. Kenyon and A. Okounkov
for many illuminating discussions, to K. Palamarchuk for valuable com-
ments, and to T. Yates for help with the implementation of the algorithm
in the C language.

1. Weights and local moves.
1.1. States.

States of the 6-vertex model on a square lattice are configurations of
arrows assigned to each edge. The 6-vertex rule is that the total number of
arrows coming into any vertex should be equal to the total number of arrows
going out of this vertex. Each configuration of arrows can be equivalently
regarded as a configuration of empty edges (arrows oriented South-North
and East-West) and occupied edges, or thick edges (arrows pointing in the
opposite directions). It is clear that thick edges will form paths. Possible
configurations of paths around a vertex are shown on Fig. 1.1.

TOME 55 (2005), FASCICULE 6
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a1 b1 c1

a2 b2 c2

Figure 1. The six vertices and their weights

We will use a1, a2, b1, b2, c2, and c2 as names of the vertices. We denote
by the same letters Boltzmann weights assign to these vertices.

Domain wall boundary conditions are shown on Fig. 2 and 3.

DWBC high =




... . . .

b1 b1 b1 b1 b1 c2

b1 b1 b1 b1 c2 b2

b1 b1 b1 c2 b2 b2

b1 b1 c2 b2 b2 b2

b1 c2 b2 b2 b2 b2

c2 b2 b2 b2 b2 b2 . . .




=

Figure 2. Domain wall boundary condition high (DWBCH)

DWBC low =




. . . . . .

c2 a1 a1 a1 a1 a1

a2 c2 a1 a1 a1 a1

a2 a2 c2 a1 a1 a1

a2 a2 a2 c2 a1 a1

a2 a2 a2 a2 c2 a1

a2 a2 a2 a2 a2 c2

. . .
. . .




=

Figure 3. Domain wall boundary condition low (DWBCL)

For domain wall boundary conditions every path in a 6-vertex
configuration will have one end at the North boundary of the square
and the other end at the East boundary of the square. These paths can be
regarded as level curves of a height function. The lowest height function is
shown on Fig. 3 and the highest height function is shown on Fig. 2.

ANNALES DE L’INSTITUT FOURIER
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1.2. Weights.

The weight of a state is the product of weights of vertices and the
weight of a vertex is determined by rules from Fig. 1. The partition function
is the sum of weights of all configurations:

Z6v =
∑

states

∏
vertices

w(vertex, state)

where w(vertex, state) is the weight of the vertex (see Fig. 1).

The ratio
1

Z6v

∏
vertices

w(vertex, state)

is the probability of the state. This is the Gibbs measure of the 6-vertex
model.

1.3. Local moves and the graph of states.

Now let us describe local moves in the space of states. Such a move
changes the configuration of arrows at the minimal number of edges near a
given vertex and it acts transitively, i.e. any given state of the model can
be transformed to any other given state of the model by a sequence of such
moves.

Such moves are most transparent in terms of height functions. There
are two types of local moves:

• The path from Fig. 4 we can move up, i.e. to the path from Fig. 5.
We will call this move flip up.

• The path from Fig. 5 can be moved down, i.e. to the path from
Fig. 4. We will say that this is the flip down.

Sa =
(

b1 a2

c2 b2

)
=

Figure 4. A local configuration that may be flipped up

Sb =
(

c2 c1

a2 c2

)
=

Figure 5. The local configuration after an up flip has occurred

Such moves with all possible surrounding configurations we will call
flips up and down.

TOME 55 (2005), FASCICULE 6
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For each flippable vertex we introduce effective weight as follows:

• For a vertex flippable up the effective weight is the product of
weights of all vertices that can be affected by the flip, i.e. the vertex itself,
and the neighboring vertices to the North , the East, and the North-East
of it.

• Similarly for a vertex flippable down the effective weight of it is the
product of weights of the vertex itself, and of next neighboring vertices to
the South, West, and South-West of it.

The effective weight is always the product of four factors. The effective
weight of vertex v in the configuration S we denote by Wv(S).

2. The Markov process.

2.1. General strategy.

Consider the abstract graph with vertices being states of the model
and with edges being local moves. This graph is clearly connected. Our goal
is to construct a random walk on this graph converging to the probabilistic
measure on vertices of this graph which is the Gibbs measure of the 6-vertex
model with DW boundary conditions.

Let us recall some basic facts. Let Γ be a finite connected graph
and q : V (Γ) → R+ be a probabilistic measure on the set of vertices
of Γ. Let M = {p(a → b)}a,b∈V (Γ) be the matrix of the Markov process
describing a random walk on Γ. A traveler moves from a to b with the
probability p(a→ b).

The matrix M must satisfy the total probability condition
∑
b

p(a→ b) = 1.

If in addition it satisfies the detailed balance condition

q(a) p(a→ b) = q(b) p(b→ a)

then it is known that the Markov process converges to q. For details about
Markov sampling and estimating convergence times, see [15].

Now our goal is to construct such a random walk converging to the
Gibbs state of the 6-vertex model. At some point the rate of convergence of
this Markov process becomes an important issue.

ANNALES DE L’INSTITUT FOURIER
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2.2. The Markov process for the 6-vertex model.

We want to construct a Markov process which chooses a vertex at
random, then with the probability which we will describe below it will
either flip the configuration up at this vertex, or will flip it down, or will do
nothing. The probability of passing from the state Sa to the state Sb in this
process can be w written as follows:

P (Sa ⇒ Sb) =
1

# vertices

∑
v

Pv(Sa ⇒ Sb)(1)

=
1

# vertices

( ∑
(v) non-flip

δ(Sa, Sb) +
∑
(v) flip-up
only

Pv(Sa ⇒ Sb)

+
∑

(v) flip-down
only

Pv(Sa ⇒ Sb) +
∑
(v) bi-flip

Pv(Sa ⇒ Sb)
)

=
1

# vertices

(
(# non-flippable in Sa)δSa,Sb

+
∑
(v) flip-up
only

Pv(Sa ⇒ Sb) +
∑

(v) flip-down
only

Pv(Sa ⇒ Sb)

+
∑
(v) bi-flip

Pv(Sa ⇒ Sb)
)

=
# non-flippable

# vertices
δSa,Sb

+
# flippable
# vertices

( 1
# flippable

∑
(v) flip-up
only

Pv(Sa ⇒ Sb)

+
1

# flippable

∑
(v) flip-down

only

Pv(Sa ⇒ Sb)

+
1

# flippable

∑
(v) bi-flip

Pv(Sa ⇒ Sb)
)

.

Here # flippable is the number of flippable vertices and # vertices is the
total number of vertices.

Algorithmically, this means that we do the following:

1) With probability
P =

# non-flippable
# vertices

,

do nothing (that is, restart the loop).

TOME 55 (2005), FASCICULE 6
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2) With probability

P =
# flip-up-only + # flip-down-only + # bi-flip

# vertices
=

# flippable
# vertices

,

continue to the next part.

If the algorithm continues, select a flippable vertex with the
probability

(5) P (selection) =
1

# flippables

At this selected vertex the configuration can be either flippable only up, or
only down, or in both directions. Depending on this proceed according to
the following rules:

Three possible conditions now exist:

1) The vertex is flippable down only. Two options:
• Flip vertex down with probability Pv(Sa ⇒ Sb) = ρWv(Sb),
• Stay with probability Pv(stay) = 1− ρWv(Sb).

2) The vertex is flippable up only. Two options:
• Flip vertex up with probability Pv(Sa ⇒ Sb) = ρWv(Sb),
• Stay with probability Pv(stay) = 1− ρWv(Sb).

3) The vertex is flippable up and down. Three options:
• Flip vertex down with probability Pv(Sa ⇒ Sb) = ρWv(Sb),
• Flip vertex up with probability Pv(Sa ⇒ Sb′) = ρWv(Sb′),
• Stay with probability Pv(stay) = 1− ρWv(Sb)− ρWv(Sb′).

Here Wv(Sb′) Wv(Sb) are the effective weights of the vertex v in the
states obtained by flipping up or down at this vertex from the state Sa.
Effective weights were described in Section 1.3.

The parameter ρ is chosen such that all probabilities of transitions
should be positive. In other words it should satisfy all conditions
ρ < 1/Wv(S′)where v is a vertex flippable in the state S either up or
down, but not biflippable and S′ is the configuration after the flip. At every
biflippable vertex in the state S we should have ρ < 1/(Wv(S′) + W (S′′))
where S′ is the result of the flipping S up at v and S′′ is the result of the
flip down.

This process satisfies the detailed balance condition, and the total
probability condition. Since the graph of states with edges being local

ANNALES DE L’INSTITUT FOURIER
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moves is connected, this process converges to the Gibbs state of the 6-
vertex model. The process also depends on the choice of ρ. It slows down
when ρ is small.

3. Random states in the 6-vertex model with DW
boundary conditions.

3.1. Phases in the 6-vertex model.

One can write weights of the 6-vertex model as

a1 = exp
(
− E1 −Hx −Hy

T

)
, a2 = exp

(
− E1 + Hx + Hy

T

)
,(6)

b1 = exp
(
− E2 + Hx −Hy

T

)
, b2 = exp

(
− E2 −Hx + Hy

T

)
,(7)

c1 = c2 = exp
(
− E3

T

)
.(8)

Here E1, E2, and E3 are energies of the interaction of arrows (or energies
associated with the local shape of level curves of the height function)
and Hx, Hy are magnetic fields.

In this interpretation arrows can be regarded as spins interacting
with the magnetic field such that the energy of a vertical arrow is ±Hx

depending on whether the arrow is heading up or down. The energy of a
horizontal arrow is ±Hy depending on whether it is oriented left or right.
We assigned the energy of an arrow to the energies of adjacent vertices.

Notice that since the total number of c1- and c2-vertices satisfies the
relation n(c1) − n(c2) = N the partition function changes by an overall
factor only when we change c1/c2. The total numbers of a and b vertices
satisfy similar relations: n(a1) = n(a2) and n(b1) = n(b2). Because of this
for the square lattice with DW boundary conditions we can set a1 = a2 = a,
b1 = b2 = b, and c1 = c2 = c without loosing generality.

3.1.2. — Let us recall the phase diagram of the 6-vertex model [10],
[3] with periodic boundary conditions in the absence of magnetic fields.
The important characteristic of the model is the parameter

∆ =
a2 + b2 − c2

2ab

TOME 55 (2005), FASCICULE 6
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The phase diagram for the 6-vertex model with periodic boundary
conditions in the absence of magnetic fields is shown on Fig. 6.

a

b

1

1

I

II

III

IV

Figure 6. The phase diagram for the six-vertex model in

terms of the weights of a and b, assuming c = 1.

There are four phases:

1) Phase I: a > b + c(∆ > 1). This an ordered phase where there are
two possibilities for the ground state. It either consists of a1-vertices or of
a2-vertices. In either case any change in the ground state results in a state
with the total number of b and c vertices comparable with the linear size
N of the system. Thus, as N →∞ the energy of these two ground states is
macroscopically separated from the energy of other states. In other words
these are two frozen ground states.

2) Phase II: b > a + c (∆ > 1). This is an ordered phase with double
degeneracy of the ground state. The first possibility is when all vertices are
b1 vertices, the second possibility is when all vertices are b2-vertices. As in
case of phase I, this is a frozen phase.

3) Phase III: a, b, c < 1
2 (a+b+c) (|∆| < 1). This is a disordered phase.

Local correlation functions decay as a power of the distance in this phase.
These are the values of a, b, c when |∆| < 1. In particular, the free fermionic
curve ∆ = 0 lies entirely in this phase. It is shown by the dotted segment
of the circle on Fig. 6.

4) Phase IV: c > a + b (∆ < −1). This is an ordered phase with so-
called antiferromagnetic ordering (see Fig. 7). The ground state in this case
consists of alternating c1 and c2 vertices. It is doubly degenerate due to the
breaking of Z2-translational symmetry. In this case microscopic deviations
from the ground state are possible. There is a finite correlation length in
the system and local correlation functions decay exponentially.

ANNALES DE L’INSTITUT FOURIER
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For details about phase transitions, magnetization, and the antiferro-
magnetic phase, etc. see [10] and [3].

Figure 7. Antiferromagnetic phase – in this phase, zig-zag

paths alternate with zig-zags formed by empty edges

3.2. The structure of a random state.

3.2.1. Free fermionic point. — This is the case when ∆ = 0. It is
convenient to parameterize weights in this case as

a = ρ cos u, b = ρ sin u, c = ρ.

When a = b = 1/
√

2 this model is equivalent to the domino tiling of the
Aztec diamond. The limit shape was computed analytically in [2] and is a
circle.

The height functions of the average states for several values of the
parameter u are shown on Fig. 8. For ∆ = 0, the limit shapes can be
computed explicitly using methods of [11] and they are ellipses, which
agrees with Fig. 8.

2a = b a = b a = 2b

Figure 8. Free fermionic point with ∆ = 0

TOME 55 (2005), FASCICULE 6
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3.2.2. Ordered phases. — In Phase I the a-vertices dominate and the
Gibbs state in this case is given by the lowest height function Fig. 3.

In Phase II the b vertices dominate and according to [10] we should
expect that the average state will be the state with the domination of
b-vertices. In other words the average state in this case is given by the
highest height function Fig. 2.

3.2.3. Disordered phase. — In this case it is convenient to use the
following parametrization of weights:

a = r sin(γ − u), b = r sin u, c = r sin γ

with 0 < γ < 1
2 π, 0 < u < γ, and r > 0. In this parametrization ∆ = cos γ,

and

a = r sin(u− γ), b = r sin u, c = r sin γ

where 0 < γ < 1
2 π, γ < u < 1

2 π. In this case ∆ = − cos γ.

Phase III contains the free fermionic curve ∆ = 0. Since this phase is
critical, one may expect that the nature of the Gibbs states will be similar
for all parameters a, b, c in this region. In particular, one would expect the
existence of a limit shape as in the case ∆ = 0. The particular form of the
limit shape may vary but the following common features should occur for
all values of a, b, c in this region:

• The limit shape is a smooth curve having exactly one common point
with each side of the square. At this point the limit shape is tangent to the
side of the square.

• Inside of the boundary of the limit shape the height function is
a smooth function and it has continuous first derivative at the boundary.
The second derivative has a discontinuity in the normal direction to the
boundary of the limit shape.

• Outside of the boundary of the limit shape the height function is
linear.

Examples of Gibbs states in the disordered phase are shown on Fig. 9,
10, 11.

3.2.4. The antiferromagnetic phase. — This region c > a + b is the
one which is non-critical and which is also not ordered. In the periodic case
the ground state has the domination of c-vertices as it is shown on Fig. 12.

ANNALES DE L’INSTITUT FOURIER
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2a = b a = b a = 2b

Figure 9. Disordered phase with γ = 1
4 π

2a = b a = b a = 2b

Figure 10. Disordered phase with γ = 1
5 π

2a = b a = b a = 2b

Figure 11. Disordered phase with γ = 1
8 π

It is convenient to use the parameterization

a = r sinh(η − u), b = r sinh u, c = r sinh η

with 0 < u < η. In this parametrization ∆ = − cosh η.

TOME 55 (2005), FASCICULE 6
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2a = b a = b a = 2b

Figure 12. Antiferromagnetic phase with ∆ = −3

In the case of DW boundary conditions there is a competition between
very rigid restrictions on the states near the boundary which allows only a

and b vertices near the boundary and the tendency of the system to have
as many c vertices as possible.

Numerical simulations show that these competing tendencies resolve
in the separation of three phases. It is fairly convincing from the Fig. 12
that the following should take place:

• The system forms a macroscopical droplet of the antiferromagnetic
phase with a boundary that does not touch the square. The height function
in this domain is linear. The boundary of this domain has four cusps
pointing towards sides of the square lattice. This phase is noncritical.
Correlation functions in this region decay exponentially.

• Near the boundary the system is ordered. This ordered region is
bordered by the disordered region where the height function is smooth.
The disordered phase is critical. There is a finite magnetization, which
means there are excitations with linear dispersions and therefore correlation
functions decay according to a power law. The boundary between ordered
and disordered phases is a smooth curve with the features similar to
the |∆| < 1 case.

4. Conclusion.

We demonstrated that local Markov sampling for the 6-vertex model
with domain wall boundary conditions indicates that the system develops
a macroscopical droplet of c-vertices when ∆ < −1. Though the existence
of the droplet can be seen from results of [16] its actual shape is very

ANNALES DE L’INSTITUT FOURIER



NUMERICAL STUDY OF THE 6-VERTEX MODEL 1861

2a = b a = b a = 2b

Figure 13. c-density plots of the antiferromagnetic phase with ∆ = −3

difficult to see there. For our computations it is not essential that the
ground state of the 6-vertex model in this phase is doubly degenerate. This
degeneracy corresponds to the translation by one step in the North-East
direction on Fig. 12. However, this degeneracy is important and presents
difficulties in the computation of correlation functions and other observable
features. In [16] this problem was properly addressed and some interesting
numerical results about correlation functions were obtained.

As it was mentioned in the introduction we did not estimate the
running time of the Markov process but the data strongly suggest that it is
polynomial in N .

It is interesting that the droplet of c-vertices is similar to the facets
in dimer models. The shape of the droplet and of the surrounding critical
phase is similar to the corresponding shapes in the dimer model on the
square-octagon lattice (see [11]). Notice that singularities in the limit shape
are cusps just as in the dimer models (see [13] and unpublished talks by
Kenyon and Okounkov).

The local Markov sampling which we used here is equally effective
for other boundary conditions in the 6-vertex model. Some of the results
for more complicated boundary conditions for the uniformly distributed
(a = b = c = 1) 6-vertex model (ice model) can be found in [4].

The questions of the speed of convergence and the results of sampling
for other fixed boundary conditions for the 6-vertex model will be addressed
in a separate publication.

A puzzling question is the role of integrability. The phenomenon of
the formation of the limit shape, also known as the large deviation principle
is a general phenomenon. The integrability most likely plays no role in it.

TOME 55 (2005), FASCICULE 6
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However, the specific features of the limit shape may be very special for
integrable systems. It would be very interesting to understand this.

A. Functions and Implementations.

A.1. Main loop.

The following tasks must be completed by the Main Loop function:

1) Import the matrix from a text file.

2) Build flippables list.

2) Set weights.

3) Define

(9) ρ =
1

max{weight combinations for all flip types} ·

5) Loop the following actions, and after a certain defined number of
successful flips, output a file with the current matrix (and status of the
Markov Chain) in it:

(a) Generate a random real, rand, between 0 and 1,

(i) continue to (b) if

# flip-up-only + #flip-down-only + #bi-flip
# vertices

≥ rand,

(ii) otherwise, go to (a).

(b) Select a random flippable position with probability

P (selection) =
1

# flip-up-only + #flip-down-only + #bi-flip

by calling the Get Flippable Position function.

(c) Call Get Weight (which is now scaled by the value of ρ, to
ensure that it always returns a value less than 1) to get the
probability of an up flip and/or a downflip at the flippable
location chosen.

(d) Generate a random real, rand, between 0 and 1,

ANNALES DE L’INSTITUT FOURIER
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(i) for up or down-only flips, iff W (Sb) ≥ rand, execute the
flip by calling the Execute Flip function, else restart main
loop;

(ii) for positions that can flip up and down, iff W (Sb) ≥ rand,
execute the flip corresponding to Sb, else iff W (Sb′) ≥
rand, execute the flip corresponding the Sb′ , else restart
main loop. In practice, this means that once a vertex
which can be flipped either way is chosen, simply divide
up the probabilities of each flip occurring as discussed
earlier.

A.2. Execute Flip.

1) If type is high:

(a) Change the entry in the list of Flippables for the vertex chosen
to make a high flip impossible.

(b) Define the following positions:

(i) One = the original position = Base

(ii) Two = (+1, +0) = Right

(iii) Three = (+1, +1) = UpRight

(iv) Four = (+0, +1) = Up

(v) Left = (−1, +0)

(vi) Down = (+0,−1)

(vii) UpLeft = (−1, +1)

(viii) UpRight = (+1, +1)

(ix) DownLeft = (−1,−1)

(x) DownRight = (+1,−1)

(c) Replace four parts:

(i) Set Contents of Position One
= Flip To One(Position One, High)

(ii) Set Contents of Position Two
= Flip To Two(Position Two, High)

(iii) Set Contents of Position Three
= Flip To Three(Position Three, High)

(iv) Set Contents of Position Four
= Flip To Four(Position Four, High)
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(d) If Up, Down, Right, or Left Positions become flippable
(call Get Is Flippable on each to check), add them to the
Flippables list.

(e) Call Fix Low End.

2) If type is low:

(a) Change the entry in the list of Flippables for the entry chosen
to make a low flip impossible.

(b) Define the following positions:

(i) One = (−1,−1) = DownLeft

(ii) Two = (+0,−1) = Down

(iii) Three = the original position = Base

(iv) Four = (−1, +0) = Left

(v) Right = (+1, +0)

(vi) Up = (+0, +1)

(vii) UpLeft = (−1, +1)

(viii) UpRight = (+1, +1)

(ix) DownLeft = (−1,−1)

(x) DownRight = (+1,−1)

(c) Replace four parts:

(i) Set Contents ofPosition One
= FlipToOne(PositionOne, Low)

(ii) Set Contents of Position Two
= FlipToTwo(PositionTwo, Low)

(iii) Set Contents of Position Three
= FlipToThree(PositionThree, Low)

(iiii) Set Contents of Position Four
= FlipToFour(PositionFour, Low)

(d) If Up, Down, Right, or Left Positions become flippable (call
Get Is Flippable on each to check), add them to the Flippables
list.

(e) Call Fix High End.

A.2.1. Fix High End

1) Define the following positions:

(a) HighCreateDownLeft = (−1,−1)

(b) HighDeleteDown = (+0,−1)
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(c) HighDeleteDownDownLeft = (−1,−2)

(d) HighDeleteDownRighLeft = (−2,−1)

(e) HighDeleteLeft = (−1, +0)

2) If HighCreateDownLeft is flippable, add it to the High Flippables
list.

3) Delete four potential flippables on the High End.

4) If any of HighDeleteDown, HighDeleteDownDownLeft, HighDelete-
DownLeftLeft, or HighDeleteLeft exists in the High Flippables list, remove
them from the list.

A.2.2. Fix Low End

1) Define the following positions:

(a) LowCreateUpRight = (+1, +1)

(b) LowDeleteUp = (+0, +1)

(c) LowDeleteUpUpRight = (+1, +2)

(d) LowDeleteUpRighRight = (+2, +1)

(e) LowDeleteRight = (+1, +0)

2) If LowCreateUpRight is flippable, add it to the Low Flippables list.

3) Delete four potential flippables on the Low End.

4) If any of LowDeleteUp, LowDeleteUpUpRight, LowDeleteUpRight-
Right, or LowDeleteRight exists in the Low Flippables list, remove them
from the list.

A.3. Get Weight.

1) Get contents of four surrounding positions if the flip occurred.

2) Multiply weights together corresponding to the contents of the four
positions.

3) Multiply (new weight configuration product) by ρ.

A.4. Flip To.

FlipTo functions take a position and a type and return what the
vertex at the given position would be after the flip of the type specified.

1) FlipToOne(Position, Type)

(a) If type is high: If vertex was a1, it will be c1; if it was c2, it will
be a2
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(b) If type is low: If vertex was c1, it will be a1; if it was a2, it will
be c2

2) FlipToTwo

(a) If type is high: If vertex was b2, it will be c2; if it was c1, it will
be b1

(b) If type is low: If vertex was c2, it will be b2; if it was b1, it will
be c1

3) FlipToThree

(a) If type is high: If vertex was a2, it will be c1; if it was c2, it will
be a1

(b) If type is low: If vertex was c1, it will be a2; if it was a1, it will
be c2

4) FlipToFour

(a) If type is high: If vertex was b1, it will be c2; if it was c1, it will
be b2

(b) If type is low: If vertex was c2, it will be b1; if it was b2, it will
be c1

A.5. Get Flip Position.

1) Generate a random integer between 1 and the total number of
flippable positions; that is, the number of up-flip only plus the number of
down-flip only plus the number of bi-flips.

2) Choose the corresponding element in the Flippable Positions list to
the random number chosen.

A.6. Get Is Flippable.

Get Is Flippable should check the status of a position to determine if
it is flippable.

1) High flippables must be a1 or c2 vertices and must have empty
upper right corners (upper right corner must be a2 or c2). High flippable
positions must have an x axis coordinate that is less than or equal to the
width of the matrix 1 (where 0, 0 is the origin) and a y axis coordinate that
is less than or equal to the height of the matrix 1.

2) Low flippables must be a1 or c1 vertices and must have empty lower
left corners (lower left corner must be a2 or c1). Low flippable positions
must have an x axis coordinate that is no less than 1 (where 0, 0 is the
origin), and a y axis coordinate that is no less than 1.
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B. Images of theN = 1000 matrix.

Figure 14. N = 1000 plot for the antiferromagentic phase

with ∆ = −3 and 2a = b

TOME 55 (2005), FASCICULE 6



1868 David ALLISON & Nicolai RESHETIKHIN

Figure 15. N = 1000 c-vertex density plot for the

antiferromagnetic phase with ∆ = −3 and 2a = b
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