[Étude numé\-rique du modèle 6-vertex avec des conditions aux limites sur les bords parois des domaines]
Nous construisons un processus de Markov qui converge vers un état aléatoire du modèle 6- vertex. Ensuite, nous l’utilisons pour faire apparaître la création dans la phase antiferromagnétique d’une goutelette constituée de sommets de type et dont la forme possède 4 pointes.
A Markov process converging to a random state of the 6-vertex model is constructed. It is used to show that a droplet of c-vertices is created in the antiferromagnetic phase and that the shape of this droplet has four cusps.
Keywords: 6-vertex, Markov chain, random sampling, Monte Carlo
Mot clés : 6-vertex, chaîne de Markov, échantillonnage aléatoire, Monte Carlo
Allison, David 1 ; Reshetikhin, Nicolai 
@article{AIF_2005__55_6_1847_0, author = {Allison, David and Reshetikhin, Nicolai}, title = {Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions}, journal = {Annales de l'Institut Fourier}, pages = {1847--1869}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2144}, zbl = {02230060}, mrnumber = {2187938}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2144/} }
TY - JOUR AU - Allison, David AU - Reshetikhin, Nicolai TI - Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions JO - Annales de l'Institut Fourier PY - 2005 SP - 1847 EP - 1869 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2144/ DO - 10.5802/aif.2144 LA - en ID - AIF_2005__55_6_1847_0 ER -
%0 Journal Article %A Allison, David %A Reshetikhin, Nicolai %T Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions %J Annales de l'Institut Fourier %D 2005 %P 1847-1869 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2144/ %R 10.5802/aif.2144 %G en %F AIF_2005__55_6_1847_0
Allison, David; Reshetikhin, Nicolai. Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 1847-1869. doi : 10.5802/aif.2144. https://aif.centre-mersenne.org/articles/10.5802/aif.2144/
[1] The shape of a typical boxed plane partition, New York J. Math., Volume 4 (1998), pp. 137-165 | MR | Zbl
[2] Local statistics of random domino tilings of the Aztec diamons, Duke Math. J., Volume 85 (1996), pp. 117-166 | MR | Zbl
[3] Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego, 1982 | MR | Zbl
[4] Diamond Ice, J. Statist. Phys., Volume 96 (1999) no. 5-6, pp. 1091-1109 | MR | Zbl
[5] Partition function of the 6-vertex model in a finite volume, Sov. Phys. Dokl., Volume 32 (1987), pp. 878-879 | Zbl
[6] An introduction to the dimer models (math.CO/0310326, http://arxiv.org/abs/math.CO/0310326) | Zbl
[7] Thermodynamic limit of the six-vertex model withdomain wall boundary conditions (condmat/0004250, http://arxiv.org/abs/cond-mat/0004250) | Zbl
[8] Calculation of norms of Bethe wave functions, Comm. Math. Phys., Volume 86 (1982) no. 3, pp. 391-418 | DOI | MR | Zbl
[9] Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Notes, Volume 3 (1996), pp. 139-150 | MR | Zbl
[10] Two dimensional ferroelectric models, Phase transitions and critical phenomena (1972)
[11] Dimers and amoebae (mathph/0311005, http://arxiv.org/abs/math-ph/0311005) | Zbl
[12] Random skew plane partitions and the Pearcey process (math.CO/0503508, http://arxiv.org/abs/math.CO/0503508)
[13] Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl
[14] Coupling from the past: a user's guide, Microsurveys in Discrete Probability (Princeton, NJ, 1997) (DIMACS Ser. Discrete Math. Theoret. Comp. Sci.), Volume 41 (1998), pp. 181-192 | Zbl
[15] Algorithms for Random Generation and Counting, Birkhauser, Boston, 1993 | MR | Zbl
[16] Directed-loop Monte Carlo simulations of vertex models (cond-mat/0401491)
[17] Combinatorial structure of the ground state of O(1) loop model (math.CO/0104216, http://arxiv.org/abs/math.CO/0104216)
[18] Asymptotic combinatorics withapplications to mathematical physics, (ed. by A.M. Vershik), 1815, Springer, 2003 | Zbl
[19] Six-vertex model with domain wall boundary conditions and one-matrix model, Phys. Rev. E, Volume 62 (2000) no. 3, part A, pp. 3411-3418 | DOI | MR
[20] On the counting of fully packed loop configurations. Some new conjectures (math-ph/0309057, http://arxiv.org/abs/math-ph/0309057) | Zbl
Cité par Sources :