Topological invariants of analytic sets associated with Noetherian families
[Invariants topologiques des ensembles analytiques associés à des familles noethériennes]
Annales de l'Institut Fourier, Tome 55 (2005) no. 2, pp. 549-571.

Soit Ω n un ensemble semi-analytique compact et soit une collection de fonctions analytiques réelles définies dans un voisinage de Ω. Soit Y ω le germe en ωω de l’ensemble f f -1 (0). Alors il existe des fonctions analytiques v 1 ,v 2 ,...,v s définies dans un voisinage de Ω telles que 1 2χ( lk (ω,Y ω ))= i=1 s sgn v i (ω), pour tout ωΩ.

Let Ω n be a compact semianalytic set and let be a collection of real analytic functions defined in some neighbourhood of Ω. Let Y ω be the germ at ω of the set f f -1 (0). Then there exist analytic functions v 1 ,v 2 ,...,v s defined in a neighbourhood of Ω such that 1 2χ( lk (ω,Y ω ))= i=1 s sgn v i (ω), for all ωΩ.

DOI : 10.5802/aif.2107
Classification : 14P15, 32B20
Keywords: germs of semianalytic sets, Noetherian families, (sum of signs of) analytic functions, $\Omega $-Noetherian algebra
Mot clés : germes d’ensembles semi-analytiques, familles noethériennes, (somme des signes de) fonctions analytiques, algèbre $\Omega $-noethérienne.

Nowel, Aleksandra 1

1 Uniwersytet Gdanski, Instytut Matematyki, ul. Wita Stwosza 57, 80-952 Gdansk (POLAND)
@article{AIF_2005__55_2_549_0,
     author = {Nowel, Aleksandra},
     title = {Topological invariants of analytic sets associated with {Noetherian} families},
     journal = {Annales de l'Institut Fourier},
     pages = {549--571},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {2},
     year = {2005},
     doi = {10.5802/aif.2107},
     zbl = {1072.14073},
     mrnumber = {2147900},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2107/}
}
TY  - JOUR
AU  - Nowel, Aleksandra
TI  - Topological invariants of analytic sets associated with Noetherian families
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 549
EP  - 571
VL  - 55
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2107/
DO  - 10.5802/aif.2107
LA  - en
ID  - AIF_2005__55_2_549_0
ER  - 
%0 Journal Article
%A Nowel, Aleksandra
%T Topological invariants of analytic sets associated with Noetherian families
%J Annales de l'Institut Fourier
%D 2005
%P 549-571
%V 55
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2107/
%R 10.5802/aif.2107
%G en
%F AIF_2005__55_2_549_0
Nowel, Aleksandra. Topological invariants of analytic sets associated with Noetherian families. Annales de l'Institut Fourier, Tome 55 (2005) no. 2, pp. 549-571. doi : 10.5802/aif.2107. https://aif.centre-mersenne.org/articles/10.5802/aif.2107/

[1] J. Bochnak; M. Coste; M.-F. Roy Real algebraic geometry, Springer-Verlag, Berlin, 1998 | MR | Zbl

[2] I. Bonnard; F. Pieroni Constructible functions on 2-dimensional analytic manifolds (preprint) | MR | Zbl

[3] M. Coste; K. Kurdyka On the link of a stratum in a real algebraic set, Topology, Volume 31 (1992) no. 2, pp. 323-336 | DOI | MR | Zbl

[4] M. Coste; K. Kurdyka Le discriminant d'un morphisme de variétés algébriques réelles, Topology, Volume 37 (1998) no. 2, pp. 393-399 | DOI | MR | Zbl

[5] A. El Khadiri; J.-C. Tougeron Familles noethériennes de modules sur k[[x]] et applications, Bull. Sci. Math., Volume 120 (1996), pp. 253-292 | MR | Zbl

[6] A. El Khadiri; J.-C. Tougeron Familles noethériennes de modules sur k[[x]] et applications (1984) (preprint) | MR

[7] J. Frisch Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math., Volume 4 (1967), pp. 118-138 | DOI | MR | Zbl

[8] S. Lojasiewicz Introduction to complex analytic geometry, Birkhauser Verlag, Basel--Boston--Berlin, 1991 | MR | Zbl

[9] C. McCrory; A. Parusinski Algebraically constructible functions, Ann. Scient. École Norm. Sup., Volume 30 (1997) no. 4, pp. 527-552 | Numdam | MR | Zbl

[10] C. McCrory; A. Parusinski Topology of real algebraic sets of dimension 4: necessary conditions, Topology, Volume 39 (2000), pp. 495-523 | DOI | MR | Zbl

[11] J. Mather Stratifications and mappings. Dynamical systems (Proc. Sympos. Univ. Bahia, Salvador) (1973), pp. 195-232 | Zbl

[12] A. Parusinski; Z. Szafraniec Algebraically constructible functions and signs of polynomials, Manuscripta Math., Volume 93 (1997) no. 4, pp. 443-456 | MR | Zbl

[13] A. Parusinski; Z. Szafraniec On the Euler characteristic of fibres of real polynomial maps (Banach Center Publ.), Volume 44 (1996), pp. 175-182 | Zbl

[14] Z. Szafraniec On the Euler characteristic of analytic and algebraic sets, Topology, Volume 25 (1986) no. 4, pp. 411-414 | DOI | MR | Zbl

[15] Z. Szafraniec On the Euler characteristic of complex algebraic varieties, Math. Ann., Volume 280 (1988), pp. 177-183 | DOI | MR | Zbl

[16] B. Teissier Varietes polaires II. Multiplicités polaires, sections planes et conditions de Whitney, 169, Centre de Mathématiques de l'École Polytechnique, France, "Labo, 1980 | Zbl

[17] J.-C. Tougeron Idéaux de fonctions différentiables, Springer--Verlag, Berlin--Heidelberg--New York, 1972 | MR | Zbl

[18] H. Whitney Tangents to an analytic variety, Ann. of Math., Volume 81 (1965), pp. 96-549 | MR | Zbl

Cité par Sources :