Martin boundary and positive solutions of some boundary value problems
Annales de l'Institut Fourier, Tome 15 (1965) no. 1, pp. 275-282.

Nous étudions le problème de Neumann avec dérivée oblique dans un domaine 2-dimensionnel borné par un contour régulier C. Le champ vectoriel donné sur C peut être tangent à C en un nombre fini de points. En utilisant une extension de la méthode de Martin nous trouvons toutes les solutions positives de ce problème aux valeurs limites.

@article{AIF_1965__15_1_275_0,
     author = {Dynkin, Evgeny B.},
     title = {Martin boundary and positive solutions of some boundary value problems},
     journal = {Annales de l'Institut Fourier},
     pages = {275--282},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {15},
     number = {1},
     year = {1965},
     doi = {10.5802/aif.206},
     zbl = {0135.32303},
     mrnumber = {34 #4521},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.206/}
}
TY  - JOUR
AU  - Dynkin, Evgeny B.
TI  - Martin boundary and positive solutions of some boundary value problems
JO  - Annales de l'Institut Fourier
PY  - 1965
SP  - 275
EP  - 282
VL  - 15
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.206/
DO  - 10.5802/aif.206
LA  - en
ID  - AIF_1965__15_1_275_0
ER  - 
%0 Journal Article
%A Dynkin, Evgeny B.
%T Martin boundary and positive solutions of some boundary value problems
%J Annales de l'Institut Fourier
%D 1965
%P 275-282
%V 15
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.206/
%R 10.5802/aif.206
%G en
%F AIF_1965__15_1_275_0
Dynkin, Evgeny B. Martin boundary and positive solutions of some boundary value problems. Annales de l'Institut Fourier, Tome 15 (1965) no. 1, pp. 275-282. doi : 10.5802/aif.206. https://aif.centre-mersenne.org/articles/10.5802/aif.206/

[1] R. S. Martin, Minimal positive harmonic functions, Trans. Am. Math. Soc., 49 (1941), 137-172. | JFM | Zbl

[2] M. Б. Малютов, Броуновское движение с отражением и задача с наклонной проИзводной, ДокладьІ АН СССР, (1964). Added in proof. The proofs of the Theorems 1-6 are published in:

[3] Е. Б. Дынкин, Границы Мартина и неотрицателЬные решения краевой задачи с наклонной производной, Успехи матем наук, 19:5 (1964), 3-50.

Cité par Sources :