Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex Kähler manifold, a singular foliation is constructed satisfying certain analytic analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with analytic singularities on a pseudo-effective line bundle , a foliation is constructed refining the nef fibration. If the singularities of the foliation are isolated points, the codimension of the leaves is an upper bound to the numerical dimension of the line bundle, and the foliation can be interpreted as a geometric reason for the deviation of nef and Kodaira-Iitaka dimensions. Several surface examples are studied in more details, blown up in 9 points giving a counter example to equality of numerical dimension and codimension of the leaves.
Étant donnée une métrique hermitienne singulière positive d’un fibré en droites sur une variété complexe kählerienne, nous construisons un feuilletage singulier satisfaisant certaines analogies analytiques des conditions numériques. Ce feuilletage raffine la fibration numériquement triviale de Tsuji et la fibration d’Iitaka. Utilisant des métriques hermitiennes singulières presque positives avec des singularités analytiques sur un fibré en droites pseudoeffectif, on construit un feuilletage raffinant la fibration nef. Si les singularités du feuilletage sont des points isolés, la codimension des feuilles est une limite supérieure pour la dimension numérique du fibré en droites, et le feuilletage donne une interprétation géométrique pour la déviation des dimensions nef et Kodaira-Iitaka. Plusieurs exemples de surfaces sont discutés, et éclaté en 9 points donne un contre-exemple à l’égalité de la dimension numérique et de la codimension des feuilles.
Keywords: singular hermitian line bundles, moving intersection numbers, numerically trivial foliations
Mot clés : fibrés en droites hermitiens singuliers, nombres d'intersections mobiles, feuilletages numériquement triviaux
Eckl, Thomas 1
@article{AIF_2004__54_4_887_0, author = {Eckl, Thomas}, title = {Numerically trivial foliations}, journal = {Annales de l'Institut Fourier}, pages = {887--938}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2038}, zbl = {1071.32018}, mrnumber = {2111016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2038/} }
TY - JOUR AU - Eckl, Thomas TI - Numerically trivial foliations JO - Annales de l'Institut Fourier PY - 2004 SP - 887 EP - 938 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2038/ DO - 10.5802/aif.2038 LA - en ID - AIF_2004__54_4_887_0 ER -
Eckl, Thomas. Numerically trivial foliations. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 887-938. doi : 10.5802/aif.2038. https://aif.centre-mersenne.org/articles/10.5802/aif.2038/
[BCE+00] A reduction map for nef line bundles, Analytic and Algebraic Methods in Complex Geometry. Konferenzbericht der Konferenz zu Ehren von Hans Grauert, Goettingen (April 2000) | Zbl
[BL99] Complex Tori, Progress in Mathematics, 177, Birkhäuser, 1999 | MR | Zbl
[BM97] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997), pp. 207-302 | MR | Zbl
[Bon95] Inégalités de Morse et variétés de Moishezon (1995) (e-print, alg-geom/9512013)
[Bou01] On the volume of a line bundle (2001) (Preprint) | MR | Zbl
[Bou02a] Cônes positifs des variétés complexes compactes (2002) (PhD thesis, Grenoble)
[Bou02b] Higher dimensional Zariski decompositions (2002) (e-print, math.AG/0204336)
[Bru00] Birational geometry of fibrations., First Latin American Congress of Mathematicians, IMPA, July 31-August 4, 2000 (2000)
[BT76] The Dirichlet Problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | MR | Zbl
[DEL00] A Subadditivity Property of Multiplier Ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | MR | Zbl
[Dem00] Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing theorems and effective results in Algebraic Geometry, ICTP Trieste (Lecture Notes) (April 2000) | Zbl
[Dem02] Private communication (2002)
[Dem82] Estimations pour l'opérateur d'un fibré vectoriel holomorphe semi-positif au dessus d'une variété kählerienne complète, Ann. Sci. ENS, Volume 15 (1982), pp. 457-511 | Numdam | MR | Zbl
[Dem92] Regularization of closed positive currents and Intersection theory, J. Alg. Geom., Volume 1 (1992), pp. 361-409 | MR | Zbl
[Die70] Treatise on Analysis II, Academic Press, 1970 | MR | Zbl
[DPS01] Pseudo-effective line bundles on compact kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | MR | Zbl
[DPS94] Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., Volume 3 (1994), pp. 295-345 | MR | Zbl
[DPS96] Kähler manifolds with semipositive anticanonical bundle, Comp. Math., Volume 101 (1996), pp. 217-224 | Numdam | MR | Zbl
[Eck02] Tsuji's Numerical Trivial Fibrations (2002) (e-print. To appear in J. Alg. Geom, math.AG/0202279) | Zbl
[Fri98] Algebraic surface and holomorphic vector bundles, Springer, 1998 | MR | Zbl
[Fuj94] Approximating Zariski decomposition of big line bundles, Kodai Math. J., Volume 17 (1994), pp. 1-3 | MR | Zbl
[Hir64] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math., Volume 79 (1964), pp. 109-326 | MR | Zbl
[Iit82] Algebraic Geometry, Graduate Texts in Math., 76, Springer, New York, 1982 | MR | Zbl
[Kaw99] Deformations of canonical singularities, J. Amer. Math. Soc., Volume 12 (1999), pp. 85-92 | MR | Zbl
[Laz00] Multiplier ideals for algebraic geometers (August 2000) (preprint, http://www.math.lsa.umich.edu/~rlaz/)
[Lel68] Fonctions Plurisousharmonique et Formes Différentielles Positives, Gordon and Breach, London, 1968 | MR | Zbl
[ME00] Opérateur de Monge-Ampère et Tranchage des Courants Positifs Fermés, J. Geom. Analysis, Volume 10 (2000) no. 1, pp. 139-168 | MR | Zbl
[Miy86] Deformations of a morphism along a foliation and applications, Proc. Symp. Pure Math., Volume 46 (1987) no. 1, pp. 245-268 | MR | Zbl
[OSS80] Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, 1980 | MR | Zbl
[Tak02] Iitaka's fibration via multiplier ideals, Trans. AMS, Volume 355 (2002), pp. 37-47 | MR | Zbl
[Tsu00] Numerically trivial fibrations (2000) (Preprint)
[Tsu99] Existence and applications of the Analytic Zariski Decomposition, Analysis and geometry in several complex variables (Trends in mathematics) (1999), pp. 253-271 | Zbl
Cited by Sources: