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NUMERICALLY TRIVIAL FOLIATIONS

by Thomas ECKL

1. Introduction.

In the last few years several fibrations related to a nef or even

pseudoeffective line bundle L on a projective complex manifold were
constructed whose fibers satisfy certain numerical properties with respect
to a sometimes modified intersection theory:

For a nef line bundle L, the usual intersection theory is taken by
[BCE+00] to define (and construct) the so called nef fibration whose fibers
contain only curves C with L.C = 0. The base dimension of this fibration is
called the nef dimension of L , and it can be proven that it is never smaller
than the numerical dimension v(L) of L. Note however that already for
surfaces there are explicit counter examples to equality, cf. Section 4.2.

Even earlier, Tsuji [TsuOO] associated an intersection theory to pos-
itive singular hermitian metrics h on pseudoeffective line bundles L by
defining

Key.vords: Singular hermitian line bundles - Moving intersection numbers - Numerically
trivial foliations.
Math. classification: 32J25.
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Here, C -~ C is the normalization of an irreducible curve C not

contained in the singular locus of h, and 1((7r*h)-)) denotes the multiplier
ideal sheaf of the pulled back metric (7r*h)’ on C. A projective complex
manifold is called numerically trivial in Tsuji’s sense iff (L, h).C = 0 for
all such curves C. In [Eck02] other possible definitions of these intersection
numbers are discussed, their relations are studied, and the fibration map
with numerically trivial fibers is constructed, according to the suggestions
of Tsuji.

Finally, Takayama [Tak02] defined intersection numbers reflecting
properties of the linear sytems ImLl by using the asymptotic multiplier
ideal 

where C is an irreducible curve not contained in the stable base locus

of L. The resulting fibration turns out to be the well known
Iitaka fibration.

The motivation for this work is to give a more unified treatment of
all these fibrations and to give geometric reasons for the deviation of nef,
numerical, and Kodaira-Iitaka dimension of a nef line bundle on a projective
manifold. Three surface examples will illustrate the ideas developed to this
purpose.

The first example is due to Mumford and has the property that
the nef dimension is bigger than the numerical dimension: Start with a
smooth projective curve C of genus &#x3E; 2 with the unit circle A as universal

covering and an irreducible unitary representation p : 7rl (C) -t GL(2, C)
of the fundamental group of C. This defines a rank 2 vector bundle

E = (A X (C) on C of degree 0 where the action of 7r, (C) is given
by covering transformations on A and the representation p on (~2.

Mumford proved that the nef line bundle L = on the

projectivized bundle P(E) is stable hence the restriction of L to all curves
D C P(E) is positive. On the other hand deg E = 0 hence L.L = 0. Hence
the numerical dimension v(L) is 1, while the nef reduction map is the

identity, and the nef dimension is 2.

It seems quite obvious how to explain this deviation: the ruled surface

P(E) carries a foliation induced by the images of the A x l in P(E) (where
l is a line through the origin in CC2 ) . Furthermore, locally the leaves of this
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foliation are mapped to points by the morphism induced by which is a

kind of numerical triviality.

This motivates the construction of numerically trivial foliations w.r.t.
some positive closed current (which may be the curvature current of some
hemitian metric on a nef line bundle) on a complex manifold X. The
starting point is an interesting criterion for numerical triviality in Tsuji’s
sense:

THEOREM 1.1. - Let X be a smooth projective complex manifold, let
L be a pseudo-effective line bundle on X with positive singular hermitian
metric h such that X is (L, h)- numerically trivial. Then the curvature
current 8h may be decomposed as

where the Di form a countable set of prime divisors on X and the ai are
&#x3E; 0.

This is proven in [Eck02], and by trivial arguments the converse of this
theorem is also true. It shows that numerical triviality is a local property of
currents and does not depend on projectivity. Hence it is possible to localize
the notion of numerically trivial fibrations to the notion of a foliation with

numerically trivial leaves (details in Sections 2.1, 2.2). The main result is
the following:

THEOREM 1.2. - On a (not necessarily compact) complex manifold
X with a positive closed (l, 1)- current T there exists a maximal foliation
with numerically trivial leaves uT.r.t. T, that is the leaves of every foliation
with numerically trivial leaves are contained in leaves of this foliation.

It is called the numerically trivial foliation w.r.t. T. The construction
rests essentially on the Local Key Lemma which allows to unite different
foliations with numerically trivial leaves, and the proof of this lemma is an
easy consequence of another interpretation of numerically trivial fibrations
f : X - Y w.r.t. to some closed positive ( 1, 1 ) - current T: The residue
current R of the Siu decomposition must be the pull
back of a (positive) current on Y (details in 2.2).

If X is projective and T the curvature current of a positive singular
hermitian metric on a line bundle, Tsuji’s numerically trivial fibration will
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be the fibration maximal among those whose fibers are contained in the

leaves of the numerically trivial foliation w.r.t. T; details in Section 2.3.
The same construction gives the Iitaka fibration of a line bundle L with
Kodaira-Iitaka dimension K(L) &#x3E; 0 provided one uses the positive singular
hermitian metric h on L defined as

where is the (singular) hermitian metric on ImLI defined by the global
sections of mL (see [Tsu99]). In this case even more is true: The numerical
trivial foliation w.r.t. h is already the Iitaka fibration (section 2.4).

It is not possible to find a positive singular hermitian metric which de-
fines the nef fibration in a similar way, as shown by an example constructed
in [DPS94] which is quite similar to Mumford’s example (section 4.1): Start
with an elliptic curve C and take as the rank 2 vector bundle E the unique
nontrivial extension of the structure sheaf Oc. As in Mumford’s example
the numerical dimension of the nef line bundle L = (1) is 1, while
the nef dimension is 2.

The remarkable feature of this example is the fact that the only
positive singular hermitian metric on L is given by the unique section of L,
the "section at infinity" ofP(E) (proof in ~DPS94~ ), andP(E) is numerically
trivial w.r.t. this metric. Hence the obvious foliation on P(E) induced by
the universal cover C of C cannot be interpreted as the numerically trivial
foliation w.r.t. some positive metric on L = 

Ideas how to deal with this situation may be found in Boucksom’s

construction of a divisorial Zariski decomposition and his definition of

"moving" intersection numbers on pseudoeffective line bundles [Bou02] on
compact Kahler manifolds. Both notions show that it is extremely useful
to loosen the restriction on positivity and to consider sequences of almost

positive ( 1, 1 ) - currents in a fixed cohomology class a whose negative parts
tend to 0.

For nef line bundles the moving intersection numbers coincide with
the usual ones. In particular, if C C X is a smooth compact curve on a

compact Kahler manifold X with Kahler form cJ, and L is a nef line bundle

with first Chern class c~ := cl (L) E 
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where the T’s run through all closed currents representing c~ such that

T &#x3E; -EC,~, and [C] is the integration current of the submanifold C of bidegree
(n - 1, n - 1). (For further details see Section 3.1.)

It is obvious that in this case L.C = 0 iff limElo SUPT +

Ecv) = 0 for all disks A C C. Thus it is justified to interpret numerical
triviality w.r.t. a pseudo-effective class as a local property: An immersed
submanifold Y c X (closed or not) is called numerically trivial w.r.t. a
pseudo-effective class c~ iff

(where the T’s run through all closed currents on X contained in for

all holomorphically immersed disks A C Y. And a foliation will be called
numerically trivial w.r.t. cx iff (locally) almost every leaf is numerically
trivial w.r.t. ~x.

It is possible to prove an analog to the Local Key Lemma, hence
there is a maximal numerically trivial foliation w.r.t. c~. It is contained

in every numerically trivial foliation w.r.t. a positive current representing
oz. If a is the first Chern class of some nef line bundle L on a projective
manifold X, the nef fibration of L is the maximal fibration contained in the
foliation (which will be called the nef foliation in that case). Furthermore,
the Kodaira-Iitaka fibration contains the nef foliation, and one gets a nice

geometric reason for deviations of the Kodaira-Iitaka and the nef dimension
of nef line bundles on projective manifolds: ~(L)  n(L) if the nef foliation
is not a fibration. It is a very interesting open question whether the converse
of this statement is also true. More generally: Is the fibration with the

smallest fiber dimension which contains the nef foliation the Kodaira-Iitaka

fibration ?

Finally, it is shown that the codimension of the leafs is an upper bound
for the numerical dimension of a, if the singularities of the foliation are
isolated points. It is not clear to the author how to weaken this assumption
or if there are counter examples. To get better answers it seems necessary
to have a closer look at the structure of numerical trivial foliations around

the singularities.

The last section of the paper constructs nef foliations of nef line

bundles on surfaces. The first two examples are those due to Mumford and

Demailly-Peternell-Schneider. In Mumford’s example it is easy to construct
a smooth closed positive ( l,1 ) - current on L = Op1 ( 1 ) such that the
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associated nef foliation is the obvious one: Take a measure w invariant

w.r.t. the representation of 7f(C) in PGL(2). This gives a measure on
(A x pI ) /7f (C) transversal to the foliation induced by the images of A x {p}.
Averaging out the integration currents of the leaves with this transverse
measure gives an (even smooth) closed positive ( l, 1 ) - current in the first
Chern class of L = which vanishes on the leaves but not in any
transverse direction.

The Demailly-Peternell-Schneider example is more difficult : A compli-
cated glueing argument leads to almost positive currents which determine
the obvious foliation.

The last example deals with I~2 blown up in 9 points and is interesting
in many ways. In particular, if one fixes 8 points in sufficiently general
position, varying the last point will give a nef fibration in the torsion

points, but there is no nef foliation on the whole family with 1- dimensional
leaves. Hence, the nef fibrations in varieties over torsion points do not

converge against a foliation in varieties over (general) non-torsion points.
This somehow answers a question asked in [DPS96].

Acknowledgement. - This article was mainly written during two
stays at the Institut Fourier in Grenoble. The first was paid by the DFG-
Schwerpunkt "Global Methods in Complex Geometry", the second by the
Institut Universitaire de France. The author enormously benefitted from
many discussions with J.-P. Demailly and S. Boucksom who generously
shared their new insights on moving intersection numbers with him and
gave the author a lot of encouragement. Furthermore, the author enjoyed
a lot the vvarm hospitality created by the whole institute.

2. Numerically trivial foliations.

2.1. Numerical triviality.

As proposed in the introduction numerical triviality of (not necessa-
rily compact) complex manifolds is defined via the criterion of Theorem 1.1:

DEFINITION 2.1. -- Let X be a complex manifold and T a positive
closed ( 1, 1 ) - current on X. Then X is called numerically trivial uT.r. t. T

iff

for countably many prime divisors Di in X and real 0.
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To compare later on Tsuji’s numerically trivial fibration with the

numerically trivial foliation it is useful to define numerical triviality for
any irreducible analytic subsets (not only for submanifolds):

DEFINITION 2.2. Let X be compact complex manifold and 0 a
positive closed ( 1,1 ) - current on X. Let Y C X be a positive dimensional
analytic subset of X such that 6 may be restricted to Y,,g, the smooth
part of Y. Then Y is called numerically trivial with respect to 8 for all

holomorphic maps f : A~ 2013~ Y such that f * O exists the complex manifold
0~ is numerically trivial with respect to f*8.

This definition is consistent with the definition of numerically trivial
manifolds:

PROPOSITION 2.3. - Let X be a complex manifold and 6 a positive
closed (1, 1) - current. X is numerically trivial w.r.t. 6 for all holomor-

phic maps f : 0~ -~ X such that f * O exists 0~ is numerically trivial w.r.t.
f* O. .

Proof. The "only if" part is a trivial consequence of the equality
f * ( ~Di~ ) = [f * (Di)] for (integration currents of) divisors. The other

direction follows from the Siu-decomposition [DemOO, (2.18)]

where R is a positive closed ( 1,1 ) - current such that the Lelong number
level sets have no codim 1 components. If R 0 0 there will exist
an open set ~7 ~ On in X such that Rlu 0- 0, hence U is not numerically
trivial w.r.t. 81u, 0

The definition of numerical triviality can be further simplified by
means of the following proposition:

PROPOSITION 2.4. - Let X be a complex manifold and 8 a positive
closed (1, 1) - current. X is numerically trivial j.v.r. t. 8 iff for all holomor-

phic X such that j*8 exists A is numerically trivial w.r. t.
j*8. .

Proof. The "only if" part follows by definition. For the other

direction start again with the Siu decomposition
,An !2--- U C X be an open subset and let q : ’An ___, be the projection
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onto the first n-1 factors. Since the Lelong number level sets contain

no codim 1 component, very general fibers F of q do not intersect any of
the Ec(.R). By the results of [MEOO] there is a pluripolar set N c A’-’
such that the level sets 0 for the restriction of R to all fibers F
over points outside of N. By assumption 0.

By the following lemma there exists a positive closed ( 1,1 ) - current
,S’ on An-1 such that .R = q*S. Let D = x ~pf be a section of q
such that RID is well defined. By induction RID = 0. Since the projection
q : D - is an isomorphism S m 0 hence R = 0. 0

LEMMA 2.5. - Let T be a positive closed (l,1)- current on On and
let q : :An ---, An- 1 be the projection onto all factors but the last one. If

0 for all x outside a pluripolar set N c An-I then there will be
a positive closed (1,1)- current S on such that T = q*,S’.

Proof. The positive current T may be written as

where the 8ij are complex measures on On ([DemOO, (1.15))). That T is a
real current implies 82J = Since T is positive, is a positive
measure for all vectors (Ai,..., Àn) E Hence

Claim. - As a ( 1, 1 ) - current i8nndzn A dzn = 0.

Proof. By definition one has to show that

for all complex valued functions (
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and the slicing formula [DemOO, (1.22)] implies that this is equal to

This is 0 because Tlq-l(x) - 0 for all x outside a pluripolar set .

Consequently,

for all An C C. Now suppose that 8ni i- 0, i.e. there is a smooth real valued
function 0 with compact support such that 8ni (a) 7~ 0. Then there is
a An E C such that

This is a contradiction. Hence I

Next, the closedness of T implies

Hence the 8iJ only depend on zl , ... , One finally gets

and ,S’ is a closed positive ( 1, 1 ) - current 0

Proposition 2.4 has an easy

COROLLARY 2.6. - Let X be a complex manifold and 0 a positive
closed ( 1, 1 ) - current. Let Y C X be an irreducible analytic subset such
that 0 may be restricted to Yreg, the smooth part of Y. Then Y is

numerically trivial ur.r. t. 0 iff for all holomorphic Y c X

such that f * O exists the complex manifold A is numerically trivial w.r. t.
f *O. .

As a consequence one can give an alternative definition of numer-

ically trivial irreducible analytic subsets using embedded resolutions of
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singularities by blowing up smooth centers. Such resolutions exist for ar-
bitrary complex manifolds, at least on relatively compact open subsets

( ~Hir64~ , ~BM97~ ) .

PROPOSITION 2.7. - Let X be a complex manifold and 8 a positive
closed (1, l)- current. Let Y C X be an irreducible analytic subset such
that 0 may be restricted to Yreg, the smooth part of Y. Then Y is

numerically trivial w.r.t. 0 for an embedded resolution f : f7 ---+ Y the
complex manifold Y is numerically trivial yv.r. t. the pulled back current
1*8. .

Proof. By the universal property of the blowup a map f : 0 -~ Y
will factorize through the blow up 7r : Y - Y of a smooth center if its

image is not contained in the center. Furthermore the exceptional divisor
is a projectivized bundle hence locally trivial. So at least locally there will
be a map Y such that 7f o f = f if the image is contained in the
center. 0

Finally there is a useful criterion for numerical triviality:

PROPOSITION 2.8. - Let X be a complex manifold and let 0 be an
almost positive (1,1)- current. Then X is numerically trivial w.r.t. 8 iff
there is an analytic subset A C X such that X - A is numerically trivial
uT. r. t. 8.

Proof. This is a direct consequence of the following standard
arguments. First a closed ( 1, 1 ) - current is 0 iff it is already 0 outside a set
of real codimension 4. [DemOO, ( 1.21 )~ . Second, for complete pluripolar sets
E (as are analytic subsets) 0 = This is true for the closed

positive current 0 + Ccv by [DemOO, (1.19)], hence also for 0. But for E
a codimension 1 analytic subset = where mE is the generic
Lelong number on E [DemOO, (2.17)]. 0

2.2. Existence of maximal numerically trivial foliations.

Consider singular foliations as described in the Appendix:

DEFINITION 2.9. - Let X be an n- dimensional compact complex
manifold with hermitian metric w and 8 ~ 0 a positive closed (1, 1) - cur-
rent on X. A singular foliation (Ui, is said to induce a (singular)
numerically trivial foliation w.r. t. 0 almost every fiber of p- is numeri-

cally trivial iv. r. t . 6.
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Note that the condition about the fibers of the pi is much stronger
than in the case of numerical trivial fibrations: Here it was only necessary
to assume that the union of numerically trivial fibers is not a Lebesgue
zero set, and the numerical triviality of all fibers over points lying in the

complement of a pluripolar set followed. In the foliation case there exist
counter examples to this conclusion: On A’ consider the plurisubharmonic
function

r,

For every z2 - fiber F with  1 the restriction ØIP is = 0. But for

&#x3E; 2 one sees that § = log ( 1 + log ~.
Theorem 1.2 states the existence of a maximal numerically trivial fo-

liation with respect to the inclusion relation "E" of singular foliations, see
the Appendix. The strategy to prove the existence of this maximal foliation
is essentially the same as for the existence proof of numerical trivial fibra-
tions : one proves that the common refinement {
of two numerically trivial foliations

vj ~ On-l ) ~, (see the Appendix) is again a numerically trivial foliation.

The main step is to establish a local analog to the Key Lemma
in [Eck02]. It is stated for the following configuration: Let W ’--" On be
a complex manifold with two projections PI : W 2013~ A~’~, p2 : 
such that a smallest projection p : as constructed in the

Appendix exists.

LOCAL KEY LEMMA 2.10. - If the fibrations induced by p, and P2 are

numerically trivial w.r. t. a positive closed (1,1)- current 6 on W, then the
foliation induced by p will also be numerically trivial w.r. t. 0.

Since any two points may be connected by a sequence of

images of p2 - fibers this is a consequence of

LEMMA2. 11. - Let 0 be a positive closed (1, 1) - current on An, let
q : On -~ 0~ be the projection onto the last k factors and let

be an analytic subset mapping surjectively on Ak (that is, l  k). If almost
every q- fiber and V are numerically trivial uT.r. t. 0 then A’ will be

numericallv trivial ul.r. t. 8.
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Proof. Let 0 = be the Siu decomposition. Lemma 2.5
shows that R = q* S for some closed positive (I , I) - current S on Now,
at least locally each map f : 0 --~ 0~ is liftable to a map f : 0 ~ V, that
is f = q o f (this is obvious for projections). Hence ,S’ is numerically trivial
by the criterion in Proposition 2.8. But divisorial components in the Siu-
decomposition of ,5’ would give divisorial components of the Lelong number
level sets of R = q*S. Therefore ,5’ - 0 hence R == 0. D

Note again that the Local Key Lemma needs stronger assumptions
on the fibers than the Key Lemma. This is shown by the same counter
example as above: The horizontal sections fZ2 = a} are also numerically
trivial as long 

Now it is an easy consequence of the Local Key Lemma to show
that common refinement (Wk, rk : Wk - On-’n ) ~ of two numerically
trivial foliations

again numerically trivial.

This ends the proof of Theorem 1.2.

2.3. Tsuji’s numerically trivial fibrations.

Now let X be a smooth projective complex manifold and L a pseu-
doeffective holomorphic line bundle on X with positive singular hermitian
metric h. As already mentioned in the beginning, the notion of numerical
triviality used to construct Tsuji’s numerically trivial fibrations is derived
from an intersection number (L, h). C of an irreducible curve C C X not
contained in the singular locus of h with the pair (L, h). A subvariety
Y c X is numerically trivial iff (L, h).C = 0 for all irreducible curves

C C X. The analysis of these intersection numbers in [Eck02] shows that

where 7r : C - C is the normalization. In particular, if (L, h).C = 0, the
curvature current of on C may be written as LXEC x) [x]. Hence
proposition 2.4 shows that numerically trivial subvarieties in the sense of
definition 2.2 are also numerically trivial in the sense just described.

The converse is also true: By the birational invariance of numerical

triviality [Eck02, 2.6] the normalization and desingularization Y of a
numerically trivial subvariety Y is also numerically trivial (in Tsuji’s sense).
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Hence the curvature current of the pulled back metric is of the form

by Theorem 1.1. But this implies certainly numerical triviality
of Y in the sense of Definition 2.2, and since every holomorphic map
f : A - Y may be lifted to a holomorphic map f : 0 --~ Y, the numerical
triviality of Y follows.

Now remind the construction of Tsuji’s numerically trivial fibration:
It is the (up to birational equivalence unique) element with maximal fiber
dimension in the set of families / : 3~ -~ N with the following properties
([Eck02, 3.3]):

(i) ~ C X x quasi-projective, irreducible, general fibres
are subvarieties of X;

(ii) the projection p : X - X is generically finite;

(iii) (L, h) is defined and not numerically trivial on sufficiently gen-
eral fibres of f, i.e. on a set of fibres which has not Lebesgue
measure 0;

(iv) the fibres are generically unique, i.e. if U C M is an open subset
such that is flat then the induced map U - Hilb(X) will be generically
bijective.

It is shown that for the maximal element, the projection p : X - X
is really birational, and that all fibers where hi F 1=- oo are numerically
trivial. But by the observation above, such a fibration can be interpreted
as a numerically trivial foliation {~", (Ui, pt) 1: Take .~’ as p*TxjN, and let
Z c X be an algebraic subset of points where p is an isomorphism and f
is smooth. Then X - Z may be covered by (analytically) open sets Ui such
that there exist maps pi : U, -~ On-~ with This implies
that the pi - fibers are numerically trivial. Consequently, it is possible to
characterize Tsuji’s numerically trivial fibration in the following way:

PROPOSITION 2.12. - Let X be a smooth projective complex mani-
fold and L a pseudoeffective holomorphic line bundle on X with positive
singular hermitian metric h. Then the birational fibration with maximal
fiber dimension contained in the numerically trivial foliation the cur-

vature current Oh is Tsuji’s numerically trivial fi bration iv.r. t. (L, h).
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2.4. The Iitaka fibration

Let X be a projective complex manifold and L a line bundle with non-
negative Kodaira-Iitaka dimension ~(X, L) &#x3E; 0. Consider the set N(L) of
all m G N such that the linear systems 0. Let mo be the greatest
common divisor of the numbers in N(L). Then there is a positive integer
m(L) such that for all positive integers m ~ m(L). Choose
generating sets f 1, ... , ,Ikrn for the linear systems ImmoL/ I # 0 and let h,
be the (possibly singular) hermitian metric on L with plurisubharmonic
weight (on the base SZ C CCn of a local trivialization x C)

and curvature current 8m == (on Q). Let hL be a smooth hermitian
metric on L with weight ø L on SZ and smooth curvature form 8 L. Write
8m == OL + and normalize the 0’ m by subtracting (if necessary) a
positive constant such that sup ~~.,2  0 (this is possible because 
is defined on the compact manifold X hence bounded from above). Then
take the upper semicontinuous upper envelope 0’ of the 0’ m and call h the
(singular) hermitian metric on L given by the plurisubharmonic weight
4 # 4L + 4"

It is useful to construct the om in such a way that 0’ has the
singularities exactly at the stable base locus

of L. This is possible by defining from 0, as follows: multiply the

generators of |mm0L| by a section in and complete this set to a

generating set of By multiplying the completing sections with
small positive constants one can reach around points x E Bs (I (m + 1) Tno L 1)
that

for arbitrarily small c. Hence given a positive integer M, for appropriately
chosen Em, there is a constant Cx &#x3E; 0 such that This

implies that 0’ has also a singularity in x.

The aim is to prove that the Iitaka fibration is (up to birational
equivalence) the same as the numerically trivial foliation with respect to
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the current Since the Iitaka fibration is a fibration this implies in

particular that in this case the numerically trivial foliation is the same as
Tsuji’s numerically trivial fibration.

To prove these assertions, first compare Tsuji’s and Takayama’s
intersection numbers:

LEMMA 2.13. - With L, h as above,

for smooth irreducible curves C not contained in a Lebesgue zero set.

Proof. To begin with, one has to relate the multiplier ideals

of the linear system ImmoLl and the positive rational number
c with the (analytic) multiplier ideals J(O,). The ideal J(c . ImmoLI) is
defined via a log resolution, but since Øm is a plurisubharmonic function
with analytic singularities defined by generating elements of it

follows that

by [DemOO, (5.9)].
As already mentioned in the introduction,

is defined by using the asymptotic multiplier ideal This ideal

is defined to be the unique maximal element among all multiplier ideals

J( ’ - ([Kaw99],[LazOO]). Consequently,

The last equality is true because J(m4Jn) C J(m4Jn+l) for all n : The
multiplier ideals do not depend on the generating set used to define 4Jn. By
multiplying the generators defining 4Jn with a section in HO (X, moL) and
completing this set to a generating set of H° (X, (n + 1)m°L) it is possible
to choose ~n  4Jn+l (as above), hence the inclusion.
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Next, Tsuji’s intersection number may be expressed as

by [Eck02, (2.3.1)] and the fact that hn is a metric with analytic singular-
ities, hence restriction to C and taking the multiplier ideal in the lim sup
above may be interchanged on smooth curves ([Eck02, Prop. 2.11]). An
easy analysis shows that

On the other hand, (L, hn).C = L.C - by [Eck02,
Prop. 1.2]. Since the upper semicontinuous upper envelope §’ of the ø’m
equals sUPm ø’m outside a set of Lebesgue measure zero ([Lel68]), the

envelope of the restrictions equals almost everywhere the restriction
on all curves outside a Lebesgue zero set. For these curves the lemma

follows from the next statement, using the definition of Lelong numbers via
integrals (2.7)]). 0

LEMMA 2.14. Let C C X be a smooth curve not contained in

~’(x)~. Then for all x E e

Proof. By definition of Lelong numbers, v(o, x) &#x3E; v(~, x) if 0 ~ 7/J.
Consequently, by the same construction as for the inclusion J(mCPn) C

the Lelong numbers of the 0,, form a decreasing
sequence of non-negative numbers in every point x C C whose limit is

&#x3E; It remains to show the equality:

If z is a local parameter of C centered in x, the restriction 0’ n may
locally be written as
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For every E &#x3E; 0 and a sufficiently small neighborhood of 0 it is true that

hence which implies

for almost all z around 0. Consequently,
for all E &#x3E; 0, and the equality follows.

This already implies that the Iitaka fibration is contained in Tsuji’s
numerically trivial fibration: Take a birational morphism p : X’ - X from
a smooth projective variety X’ such that the Iitaka fibration induced by
the linear system )Tnp*L) is a morphism f : X - Y on another smooth
variety Y. The general fiber of this fibration is smooth. Smooth varieties are
numerically trivial w.r.t. some pair (L, h) iff (L, h).C = 0 for all sufficiently
general smooth curves in this variety ([Eck02, 3.1]). Hence by the above
inequality the numerically trivial fibration w.r.t. (/-L* L, fL*h) contains the
Iitaka fibration. By birational equivalence of intersection numbers ([Eck02,
2.6]), the numerically trivial fibration w.r.t. (p*L,p*h) is birationally
equivalent to that on X w.r.t. (L, h).

Next note that there is a positive integer m such that the Iitaka
fibration of L is induced by the linear system ImLI [Ii82, 10.3].

LEMMA 2.15. - Let L be a holomorphic line bundle on a projectjfve
complex manifold X such that ImLl is a non-empty linear system which
induces a rational map Y. Then 01,,,Ll is the numerically
trivial foliation w.r.t. hlll-

Proof. By corollary 2.6 it is enough to show that for every holo-
morphic map f : A 2013~ ~ such that A is not mapped to a point and does
not intersect the base locus of the unit disk A is not numerically
trivial w.r.t. But when ImLI has no base points in the image of
0, the metric f *hl,Ll is a smooth metric with smooth positive curvature
form different from 0. 0

LEMMA 2.16. - For X, L and h as above, let m &#x3E; 0 be an integer
such that I mL is a non-empty linear system, and f : 0 -~ X a holomorphic
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map such that i

A numerically trivial w.r.t. f *h F A numerically trivial w.r.t. f* h!mLI’

Proof. This is a trivial consequence of the Lelong number inequal-
ity v(f* hm, x), see above. El

The last lemma implies that the numerically trivial foliation w.r.t. h
is contained in the numerically trivial foliation w.r.t. hlmLI, and the lemma
before shows that this foliation is the Iitaka fibration which in turn is

contained in Tsuji’s numerically trivial fibration by the arguments above.

Remark. - This also shows that the Iitaka fibration is the numeri-

cally trivial foliation w.r.t. hlmLI for an appropriate m.

3. Bounds for the numerical dimension.

In this section the ideas of Boucksom and Demailly are used to
construct a numerically trivial foliation for pseudo-effective ( l, 1 ) - classes
on compact Kahler manifolds. The next paragraph tries to collect the

scattered and mostly unpublished definitions and properties of volumes and
moving intersection products of pseudo-effective classes without claiming
any originality or completeness and mostly without proof (in many cases
they may be found in [Bou02a]). The main result about the numerically
trivial foliations will be that the codimension of their leaves determines an

upper bound for the numerical dimension of the pseudo-effective class, if

the singularities of the foliation are isolated points.

3.1. Moving intersection numbers of pseudo-effective classes.

Starting with Fujita’s approximate Zariski decomposition ([Fuj94],
[DELOO]) Boucksom developped a notion of volume for arbitrary pseudo-
effective classes on compact Kahler manifolds. This was gener-
alized (with small modifications) by Demailly to a "moving intersection
product" of pseudo-effective classes ([Dem02]). This in turn allows the def-
inition of a numerical dimension for pseudo-effective classes.

Logically one has to start with defining the "moving intersection
nurnbers" :
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DEFINITION 3.1. - Let X be a compact Kähler manifold with Kähler
form Let al, ... , ap e Hl,l (X, JR) be pseudo-effective classes and let e be
a closed positive current of bidimension (p, p). Then the moving intersection
number ..... ap . of the ai and e is defined to be the limit when

where the Ti’s run through all currents with analytic singularities in

and F is the union of the Sing(Ti).

It is not difficult to justify the existence of the limit above: First, on
X -F the currents Ti-f-ECV may locally be written as ddcui for some
bounded plurisubharmonic function By results of Bedford-Taylor [BT76]
this implies the existence of the integral. In addition Boucksom [Bou0l]
showed that these integrals are bounded by a constant only depending
on the cohomological classes ftil and (this is where the Kahler

assumption comes in). Hence the supremum always exists, and is increasing
with increasing E. This implies the existence of the limit. Finally it is easy
to see that this limit does not depend on the choice of the Kahler form c,~.

The (al ..... o;p - are symmetric in the ai and concave and ho-

mogeneous in every variable separately. For nef classes ai E R) the
moving intersection number equals the normal cohomological intersection
number (a 1 - ..... 0 1) [Bou02a]. If some of the pseudo-effective classes
coincide one has

LEMMA 3.2. - For pseudo-effective classes a, ... , an the mov-

ing intersection number (aP - ap+l ’ - - - is the limit for E --+ 0 of

where T E and Ti E have analytic singularities.

Proof. - See Lemma 3.2.7 in [Bou02a]. 0

DEFINITION 3.3. - Let X be a compact KAhler manifold. Then the
numerical dimension of a pseudo-effective class a E Hl,l(X,JR) is

defined as

for some (and hence all) Kahler classes w.
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Now the volume of a pseudo-effective class c~ E on a

compact Kahler manifold may be defined as a special case of the moving
intersection product:

, , , , 

But there are other useful possibilities to define it: First remember that

Fujita considered projective n- dimensional algebraic varieties X and line
bundles L over X, and defined the volume of L by

If L is nef the volume of L is the self-intersection Ln, by Riemann-
Roch and ([DemOO, (6.7)]). For arbitrary pseudo-
effective classes c~ E R) on compact Kahler manifolds X Boucksom
generalized this volume by defining

where the supremum is taken over all closed positive (1, 1) - currents T
with ~T~ = Of and Tac is the absolute continuous part of the Lebesgue
decomposition T = Again, the Kahler assumption is necessary to
guarantee that T’ is locally integrable. By using singular Morse inequalities
and the Calabi-Yau theorem Boucksom proved that vol(L) = vol(cl (L))
and that vol(L) &#x3E; 0 iff L is a big line bundle, i.e. iff there is a closed

strictly positive current representing cl (L).
Note that it is not necessary to look at all closed positive ( 1, 1 ) - cur-

rents for taking the supremum. This is a consequence of an approximation
theorem of Demailly:

THEOREM 3.4 ( ~Dem92~ ) . - Let T = 9 + ddco be a closed almost
positive (l, 1)- current on a complex manifold X with hermitian metric cv
such that 8 is a smooth form. Suppose that T ~ ~ for some real C°° - form
q. Then there exists a decreasing sequence cjJk of almost plurisubharmonic
functions with analytic singularities such that the Tk :- B + ddcok verify

(i) The Tk converge pointwise and against 0, hence the Tk
converge weakly against T.

(ii) T~ &#x3E; -y - for some sequence of positive numbers Ek - 0.

(iii) The Lelong numbers v(Tk, x) converge uniformly against v(T, x)
w.r.t. x E X.
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Using another approximation theorem ([Dem82]) Boucksom slightly
modified this statement 

THEOREM 3.5. - Let the assumptions and notations be the same
as in the theorem before. Then there exists a decreasing sequence Øk
of plurisubharmonic functions with analytic singularities such that the
Tk := 0 + verify

(i) The Tk converge weakly against T, and - Tac almost

everywhere.

(ii) for some sequence of positive numbers Ek - 0.

(iii) The Lelong numbers v(Tk, x) converge uniformly against v(T, x)
w.r.t. x E X.

So one may define instead

where the T’s run through all closed ( l,1 ) - currents with analytic singu-
larities in that is {T} = cx and T ~ for some hermitian metric

W on X.

Here, closed ( 1,1 ) - currents with analytic singularities are currents
whose almost plurisubharmonic potentials locally look like

with fl, ... , f, holomorphic, up to a bounded C° - function. Such currents
T are particularly useful because their absolut continuous part is the same
as the residual part R in the Siu-decomposition T = + R.

Consequently, one may compute fx T ~ by blowing up the (integral closure)
of the ideal of singularities locally generated by the fi and integrating the
smooth form given by the pull back of T minus the integration currents of
the exceptional divisors as they occur in the inverse image of the singularity
ideal. In Fujita’s setting this corresponds to blowing up the base locus of
the multiples mL and decomposing the pull back of L into an effective part

and a free part and Fujita’s theorem [DemOO, (14.6)] tells us that
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Finally, the last definition of vol(a) is equivalent to the first one, with
moving intersection numbers, by Lemma 3.2.

3.2. Numerical triviality for pseudo-effective classes

First repeat and codify the informal definitions of numerical triviality
and numerically trivial foliations w.r.t. a pseudo-effective class from the
introduction:

DEFINITION 3.6. - Let X be a compact Kiihler manifold with Kahler
form pseudo-effective class a E A submanifold Y c X

(closed or not) is numerically trivial w.r.t. a iff for every immersed disk
OCY,

where the T’s run through all currents with analytic singularities in 
and 0’ _ {t : t )  1- 6) is any smaller disk contained in A f t :  1}.

As a convention set + 0 if A - Sing T = 0.
Furthermore note that the restriction to disks A’ may be replaced by
the assumption that it is possible to continue the immersion A C Y

holomorphically.

DEFINITION 3.7. -- Let X be a compact Kahler manifold ulith a

pseudo-effective class a C R). A foliation is numeri-

cally trivial w.r. t. a iff

(i) every fiber of p2 is numerically trivial a,

(ii) and if /:::,. 2 ~ Ui is an immersion such that the projection onto
the first coordinate coincides with the projection pi : Ui --~ /:::,. n-k, then for
any 0’ C C 0 and any sequence of currents Tk E a[-’EkW], Ek -~ 0, the

integrals Tk (Tk + Ekw) are uniformly (in a) bounded from
above.

Note that no exceptional fibers are allowed: if the fibers are completely
contained in the common singularity locus of the T E then they
are numerically trivial by the convention above, otherwise the limit in

Definition 3.6 is supposed to be 0. The uniform boundedness is essential
for the proof of the Local Key Lemma below.
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To construct a maximal numerical trivial foliation w.r.t. this notion,
it is enough to prove an analog for the Local Key Lemma 2.10:

LEMMA 3.8 (Local Key Lemma for pseudo-effective classes). - Let X
be a compact KAhler manifold with a pseudo-effective class a E Hl (X, R).
Let W!2--- A’ be an open subset of X with a projection p : W --t 0~ onto
the last k factors, and let V = = 

... 
- Z,-k - 01 be a complex

submanifold of W. If every fiber of p and also Y are numerically trivial
w.r. t. a, then W will also be numerically trivial w.r. t. cx.

Then the maximal numerically trivial foliation w.r.t. cx may be

constructed in the same way as in Section 2.2.

The proof of this Local Key Lemma for pseudo-effective classes

imitates the proof of the Local Key Lemma for closed positive ( 1, 1 ) -
currents : There, the numerical triviality of the fibers of the projection
implies that the residue current of the Siu decomposition is a pull back
of a current on the base (see the Pullback Lemma 2.5). Of course, the
Pullback Lemma is not true for pseudo-effective classes. But it is enough
to prove that the restriction onto different horizontal sections are quite the

same, hence the numerical triviality of V implies the numerical triviality of
all horizontal sections, hence that of W. This argument is made exact by

PROPOSITION 3.9. Let X be a compact Kahler manifold with
Kahler form and let T~ + 6~ -~ 0, be a sequence of

closed positive ( 1, I)-currents on X such that the T~ represent the same
cohomology class. Let be an immersion (with coordinates Zl, z2).
Let A’ cc A be a disk, and consider the functions fk : A’ - &#x3E;

Tk Tk and gk : ~’ ~ ~ 
Tk T k’

Suppose that fk (a) = 0 for all a E A, and that the fk are uniformly
(in a) bounded from above. Suppose furthermore that gk (0) = 0.
Then gk (b) = 0 for all b C A’, and the gk are uniformly (in b)
bounded from above.

Proof. Since the integrals are always evaluated outside the singu-
larities of Tk, and since the mass of the integration current of a divisor is

always concentrated in the divisor, one can assume without loss of gen-
erality that the Siu decomposition of T~ does not contain any integration
currents of divisors. Consequently, Tk has only finitely many isolated sin-
gularities on any compact subset of where A’ cc A is any disk

and PI : ~2 --t A is the projection onto the first coordinate, and T~ may
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be written on

where the 0’ are smooth functions outside these singularities, and inte-
grable on 02. That Tk is a real current implies ok = e;2.

To prove the proposition it is enough to show that

for a sequence of disks A’ C C 0 exhausting A (where
Now, choose a path 7 E A from 0 to b. Then,

equals (by Stokes and Fubini)

Since the closedness of T implies

this integral equals by Stokes

and since z2 is constant on A’ x this simplifies to

I

Observe that these integrals do not depend on the chosen path ~y.

Consequently, cover the disk Ao b with center in b/2 and radius Ib/21 with
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a family of paths -ya from 0 to b. Then to prove
it is enough to show that

The term with vanishes since Zdz2 A dz2 is pulled back to 0 in any chart
of x Since 0k = 0’, the remaining integral may be bounded from
above by 

"

where C is independent of b and 1~, and dv is a volume element on

Now interpret Tk as a semipositive hermitian form (. ,.) on every
tangent space Tx,x (where T has no singularities). Then the Schwarz
inequality implies that

Hence the integral above is  the square root of the product

again by the Schwarz inequality.

Claim. - There exists a bound M’ &#x3E; 0 such that for all 1~ there is a

disk C C 0 containing A’ with

Proof. Suppose that , and look at the ( l, 1 )-form
q = idz2 A dz2. There exists a C &#x3E; 0, such that q x on 0" x A’.

Hence,

and the last integral only depends on the cohomology class of Tk ’ (and 
By Fubini one gets a disk as above. D
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For the second term note that the assumptions on the functions f ~;
imply Ill! fkida A da = 0, by Lebesgue’s dominated convergence,
and the measure of the sets {~ : fk (a) &#x3E; 61 tends to 0, too, for k - oo.

Hence, as above, for a given E &#x3E; 0 it is possible to bound the measure
of {2 : fk (a) &#x3E; 61 small enough such that for all k big enough there is a
disk 0~ C C A containing A’ with

Choosing 6 small enough and M’ big enough (but both independent of k!)
one can assume that the two disks A’k and A"k coincide (at least for k big
enough). Since M’ is independent of E, the difference J6. k,b j. Tk
tends to 0 for k - oc, and uniformly in b. Since this is

.,.,

also true for Tk. Consequently, 0, and the

uniformity in b implies the uniform boundedness of the gk . 0

Proof of the Local Key Lemma for pseudo-effective classes. - If ~
is a disk immersed in W such that p projects it on a point there is

nothing to prove.

If A is a disk immersed in W not intersecting Y which is projected
biholomorphically onto Ak, then a coordinate change and further cutting
down leads to the configuration described in the proposition. Note that it
is sufficient to check on any disk A’ C C A that

for arbitrary sequences Tk of currents with analytic singularities in c~[2013 -~~].
The assumptions of the Local Key Lemma imply that

for all a and limk-+oo = 0. The definition of a
Z2 = - ing k

numerically trivial foliation implies the uniform boundedness of the fk,
so it is possible to apply the proposition.

If ~ is a disk immersed in W not satisfying one of the two conditions
above, then for any A’ C C 0 there are disks A" C C ~~ c A such that
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U A§’ D A’ (hence it is enough to consider finitely many of these disks),
and there are projections pi : (possibly different from p) such
that the restriction onto Ai is a submersion. Since the fibers and sections of
these pi are composed of disks already shown to be numerically trivial, it is
possible to apply again the proposition on A§’ C C Ai (by possibly further
cutting down and a coordinate change). Since there are only finitely many
i’s, A’ is also numerically trivial.

Finally, the uniform boundedness property of the foliation follows
directly from the uniform boundedness shown in the proposition. 0

3.3. The Iitaka fibration and the nef fibration.

A remarkable fact about the construction of a numerically trivial
foliation w.r.t. a pseudo-effective class c~ is that it works also if one restricts
to non-empty subsets of currents with analytic singularities in 

LEMMA 3.10. Let X be a compact Khhler manifold with Kahler
form UJ and 0 a closed positive (l,1)- current representing the cohomology
class a E Then the foliation constructed w.r.t. the subsets

0 1 c is the numerically trivial foliation w.r. t. e.

Proof. Comparing Definitions 2.2 and 3.6, and taking into account
the Criterion 2.4 for numerical triviality one immediately gets that the
numerically trivial foliation w.r.t. 0 is contained in that constructed w.r.t.
the subsets 101 c But the other inclusion is also not difficult to

prove: Every holomorphic maps A onto a 1- dimensional

analytic subset, and the integrals in Definition 3.6 may be taken outside
the singularities of this set. 0

It is also clear that this foliation contains the numerically trivial
foliation w.r.t. a. In particular:

PROPOSITION 3.11. Let X be a projective manifold and L a nef
line bundle on X such that the Kodaira-Iitaka dimension K(L) &#x3E;- 0. Then
the nef foliation of L is contained in the Iitaka fibration.

In analogy to Tsuji’s numerically trivial fibration one can define the

pseudo-effective fibration of a pseudo-effective line bundle L as the maximal
fibration contained in the numerically trivial foliation w.r.t. cl (L).
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PROPOSITION 3.12. - Let X be a projective manifold and L a nef line
bundle on X. Then the nef fibration of is equal to the pseudo-
effective fibration.

Proof. This is just a consequence of the definitions: A curve C
which is numerically trivial w.r.t. cl (L) satisfies (L.C)&#x3E;o = L.C = 0, and
vice versa. 0

To summarize, all this gives a (sufficient) geometric reason that the
fibers of the nef fibration are strictly contained in the fibers of the Iitaka
fibration: this happens if the nef foliation is not a fibration. It would be

interesting to decide if the converse is also true.

3.4. Currents with minimal singularities.

To state and to prove the results about upper bounds for the numer-

ical dimension of a pseudo-effective class, a further notion is still missing:
that of currents with minimal singularities.

DEFINITION 3.13. - Let Øl and Ø2 be two almost plurisubharmonic
functions on a complex manifold X. Then ~1 is said to be less singular
than Ø2 in x E X iff

in a neighborhood of X. The fact that cjJl is less singular than in every

point is denoted by ~2.

Now let X be compact Kahler and a E R). Let 8 be a smooth
(1,1)- form representing cx. Then every current in a may be written as

T = 8 + for some almost plurisubharmonic function cjJ and

shall denote the fact that rP2’

PROPOSITION 3.14. Let q be a smooth ( 1,1 ) - form on X. Every
non-empty subset of admits a lower bound in ur.r. t. ~ .

Proof. --- The proof is almost trivial and of course contained in

[DPS01] but is repeated for emphasizing a certain uniqueness property.
Let be the given subset of Write T, - 0 + dd’oi where

0, is almost plurisubharmonic and 8. Since X is compact,
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all almost plurisubharmonic functions are bounded from above hence one

may suppose that 0 by subtracting a constant. If one choose this

constant such that supxcx 0 the ~2 will be unique: An almost
plurisubharmonic function cp with ddccp == 0 is a holomorphic function.

The cpi have an almost plurisubharmonic upper envelope 0 such that
8 + dd~(~ E The current T = 8 + dd~~) is obviously a lower bound for
the (TZ ) iE 1, with the following property: If Ti for all I, then ,S’ ~ T. 1:1

Remark. 2013 The construction above shows that this lower bound
T = T min is unique only up to L°. On the other hand, given the
smooth ( 1, 1 ) - form 8 in cx, the construction leads to a well defined

current = 0 + ddccpmin via the upper envelope. Here, the almost
plurisubharmonic function satisfies where the cpi are chosen
as above.

This current will be used in the following.

The currents with minimal singularities may be used to define mini-
mal multiplicities of pseudo-effective classes, having a look at Boucksom’s
construction of higher dimensional Zariski decompositions [Bou02b]. In this
paper, he interpreted the Lelong numbers of a current Tmin,E with mini-
mal singularities in as the obstructions to reach smooth currents in

This led him to

DEFINITION 3.15. - The minimal multiplicity of a pseudo-effective
class a E Hl,l (X, R) in x E X is defined as

The generic minimal multiplicity on a prime divisor D C X is defined as

Denoting by a current with minimal singularities in one has

always

There are examples where  see Section 4.1

The following approximation of Tmin which will be useful later on:
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THEOREM 3.16. - Let X be a compact Kahler manifold with Kiihler
form w, let c~ E R) be a pseudo-effective class. Then there exists a
sequence of closed (l, 1)- currents Tk with analytic singularities in 
for some sequence -~ 0 of positive real numbers such that

(i~ the Tk converge weakly against a closed positive (1,1)- current
T which has minimal singularities in a ~0~ , 1

v(Tk, x) - x) for every point x E X,

(iii) for all i

Proof. To compute it is enough to determine the limit
of the
r

where T E has analytic singularities, by Lemma 3.2. Consequently,
for each p there is a sequence of closed ( 1, 1 ) - currents (T~p~ ) with

analytic singularities such that Ik E a[ -Ekw] for some sequence Ck --~ 0
of positive real numbers and

Now let () be a smooth (1,1)- form on X representing a. Let

Tmin,k = be the current with minimal singularities in 
associated to 8, as described in the remark above. Since = E

this implies ~~p~  0. Furthermore the converge

weakly against a current Tmin with minimal singularities in 

By Demailly’s Approximation Theorem 3.4 there exists a decreas-
ing sequence of almost plurisubharmonic functions with analytic
singularities converging pointwise and Lfoc against such that

= B + for some sequence of positive
real numbers. Furthermore for every point x E X.

Let /-L : y 2013~ ~ be a common resolution of the singularities of T~,l
and the T~p~ . Then
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where R(p), Rk,l are smooth and Dip), Dk,l are effective R- divisors. Since
the form a decreasing sequence, ~~p~  and is less singular than

T~p~ . In particular hence the class (
is pseudo-effective. Consequently,

since the integrals over the compact manifold Y only depend on the
cohomology classes, and all factors besides
are smooth. Iterating gives

Noting that

and similarly for and one finally gets

Since the same line of arguments shows

For l big enough (depending on k) this gives

Combining all these facts one gets a sequence of closed positive ( l, 1 ) -
currents with analytic singularities in such that the

Tk converge weakly against and conditions (ii) and (iii) of the theorem
are also satisfied. 0
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Remark. - As long as weakly for k - oc, in the

construction above it is not necessary that the Tk,m2n are computed w.r.t.
the same smooth ( 1, 1 ) - form on ct.

The approximation may be used e.g. to prove

LEMMA 3.17. - Let X be a compact Kahler manifold and a E

a pseudo-effective class. Let U C X be an open subset,
and let p : A~ 2013~ On-1 be the projection onto the last n - 1 coordinates.
Then there is a pluripolar set E such that for all -fibers A over

points in 

where the T’s run through all currents in with analytic singularities,
for which the restriction to A is well-defined.

Proof. The proof is an application of the theory of (L, h)- resp. T-
general curves. If T is an almost psoitive ( 1, 1 )- current on X, a smooth
curve C (compact or not) will be called T- general iff the restriction of T
on C is well-defined and

(i) C intersects no codim-2-component in any of the Lelong number
level sets E, (T) ,

(ii) C intersects every prime divisor D C E~. (T ) in tlie regular locus
of this divisor, C does not intersect the intersection of two such prime

divisors, and every intersection point x has the minimal Lelong number

v(T, x) = v(T, D) :- minzED v(T, z),

(iii) for all x E C, the Lelong numbers

Then theorem 2.1. in [Eck02] states that in a family of curves over a
smooth base there is a pluripolar subset in the base such that every curve
over points outside this pluripolar set is T-general. In particular, this is

true for currents Tk approximating T mzn as in the theorem above. Since
the union of countably many pluripolar sets is again pluripolar, this proves
the lemma. D
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3.5. Upper bound for the numerical dimension.

The numerically trivial foliation w.r.t. a pseudo-effective class may be
also used to bound its numerical dimension, provided that the singularities
of the foliation are nice enough:

THEOREM 3.18. - Let X be a compact Kahler manifold with Kahler
form wand a E a pseudo-effective class. Let F be the

numerically trivial foliation w.r.t. c~ and suppose that the singularities of
F are isolated points. Then the numerical dimension v(a) is less or equal
to the codimension of the leaves of F.

Proof. Applying Theorem 3.16, one gets a sequence of closed ( 1,1 )-
currents Tk with analytic singularities in such that

for all p == l, ... , n. In these integrals, the Tk’s may be replaced by the
residue currents

of the Siu decomposition of the Tk .

Now the proof consists of two steps: first, let A’ 2-~2 U C X be an open
set such that the projection q : U - A’ -~ A’ on the last l coordinates
describes the numerical trivial foliation w.r.t. a locally in U. Then use as
in Proposition 3.9 that the get close to pulled back currents from the
base A’ to show

Claim 1. - For I  p ~ n and an open subset U’ C C U,

Proof. Every Rk + may be written as a sum ;
°7J J 

-

Then every coefficient of (Rk + Ekw)P w.r.t. the base dzl A (I, J multi-
indices of length III _ ~ I J = p) is a product of p of these 9 ~ . then

one of these ok has 
As in proposition 3.9 one can argue with the Schwarz inequality that
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Furthermore, let Fi be a sufficiently general fiber of the projection
~n 2013~ A~"~ onto all but the ith coordinate, t = 1,..., n - l. Since Rk
is a current with analytic singularities only in codimension 2, a sufficiently
general Fi does not hit the singularities of Rk. Then is smooth

and positive, and numerical triviality applied on the 1-dimensional fibers
Fi which are leaves of q implies that

This leads to the following chain of inequalities: Let I = (il, ... , ip) and
J = (.7i? - - - jp ) be two multi-indices of length p such that (without loss of
generality) n - 1. Then

The second integral of the last term remains bounded for k - oo because
the Rk + (weakly) converge against some current according to Theo-
rem 3.16. The first integral may be computed via Fubini as

hence tends to 0 oc since the integral
uniformly bounded from above by definition of numerically trivial folia-
tions. Consequently, j and the claim follows. 0

The second step is to give an estimate of the considered integrals
around the isolated singularities of the foliation by using the uniform
boundedness of the Lelong numbers of (almost) positive currents in the
same cohomology class.

Claim 2. - There is a sequence of compact sets Ki C X exhausting
X - Sing F and a constant C &#x3E; 0 such that for all 1 ~ p  n



921

Proof. This is just an expanded version of Boucksom’s argument
in [Bou02a, Lem 3.1.11]. Choose a finite covering of X by open charts Ui
isomorphic to the unity ball Been, such that the balls with half of the
diameter still cover X. If denote coordinates on Ui one may find two
constants Cl, C2 &#x3E; 0 such that

in Ui, for all i .

If x E X lies in the Lelong number x ) is by definition
the decreasing limit for r ~ 0 of

On the one hand, for r  ro one has

But , and the last integral
depends only on the cohomology class of Tk, since w is closed.

On the other hand,

For p  n the claim follows since Sing ,~ is compact, hence consists of only
finitely many points. For p  n there is nothing to argue, since = n

implies that a is big ([Bou02a, Thm. 3.1.31]). Hence the numerically trivial
foliation coincides with the Iitaka fibration w.r.t. a, because it is the

identity map. 0

Both claims together show the theorem. 0
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4. Surface Examples.

If one constructs the numerical trivial foliation w.r.t. an incomplete
system of currents with analytic singularities in 6~ -~ 0, then
the leaf dimension is greater or equal than that of the numerical trivial
foliation w.r.t. cx. Unfortunately, the author could not prove any criterion
when the leaf dimension remains the same (hence the two foliations are
equal). In general, it seems quite difficult to decide whether a given foliation
is numerically trivial w.r.t. some pseudo-effective class c~. In the first two
surface examples which follow, some ad-hoc arguments are used to show the
identity of the constructed foliations and the numerically trivial foliation
w.r.t. the given pseudo-effective classes.

4.1. A nef line bundle without smooth positive curvature form.

This example was already discussed in [DPS94]: Let F = C /(Z + ZT) ,
ImT &#x3E; 0, be an elliptic curve and let E be the rank 2 vector bundle over F
defined by

where the action is given by the two automorphisms

and where the projection E* ~ F is induced by the first projection
(x, zl , z2 ) - x. Then is a trivial line subbundle

C~ ~ E, and the quotient E/C~ ~--" r x {0} x C is also trivial. Let L be
the line bundle L = over the ruled surface X = P(E). The exact
sequence

shows that L is nef over X.

Now, in [DPS94] all hermitian metrics h (including singular metrics)
are determined such that the curvature current Oh (L) is semipositive (in
the sense of currents): These metrics have all the same curvature current

where C is the curve on X induced by = 0~. (This implies in particular
that there exists no smooth positive hermitian metric on L.) To exclude
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the possibility that there exist positive currents in ci (L) which are not the
curvature current of a metric on L one proves the following

LEMMA 4.1. Let X be a projective complex manifold and L a
holomorphic line bundle on X. Then for every closed positive current in

cl (L) there is a possibly singular hermitian metric h on L such that the
curvature current

Proof. Let T be any positive current in ci (L). By [Bon95] there
exists a line bundle L’ on X with a possibly singular hermitian metric h’
such that 8h’ (L’) = T. (This is just the usual construction of a cycle in

0*)). The line bundle N = (L’)-l Q9 L is numerically trivial, hence
nef. Consequently there exists a positive singular hemitian metric hN on
N such that the class of the curvature current

Now, all closed positive currents in 0 E Hl,l (X, R) have the form dd’O
for some plurisubharmonic function on X. Since 0 is upper semi-continuous
it attains its supremum. But then the maximum principle implies that
0 is a constant function. Therefore the only closed positive current in
0 E R) is the zero form. This implies 8hN (N) = 0 (as a current).

Furthermore this gives the hermitian metric h = hN0h’ on L = N0L’
n

So [C] really is a positive current with minimal singularities in cl (L).
But then X is numerically trivial w.r.t. [C], and the associated numerical
trivial foliation has only one leaf X with codimension 0.

On the other hand, L is certainly not numerically trivial since it

intersects a fiber of X = P(E) with intersection number 1. Consequently,
the moving intersection number cl (L) is strictly positive,
and (X, cl (L) ) is a counter example to equality of the numerically trivial
foliation w.r.t. the positive closed (1, )- current with minimal singularities
and that w.r.t. the associated pseudo-effective cohomology class.

Now there is an obvious candidate for a numerically trivial foliation
w.r.t. cl(L): its leaves are the projection of the curves C x {p} in Pc(E).
The strategy to show this has two parts: first, one constructs a sequence of
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currents Tk E for some Kdhler form W on X and a sequence

6/c of positive real numbers tending to 0 such that the foliation mentioned
above is the numerically trivial foliation w.r.t. this sequence of Tk ’s. Second,
one uses that the restriction of the Tk’s to any P1-fiber of is &#x3E; c . w,

for some fixed number c &#x3E; 0.

The construction of the T~ requires a careful study of almost positive
(singular) hermitian metrics h on L: As the total space of L-1 is equal to
E* blown up along the zero section, the function

associated to any hermitian metric h on L can also be seen as a function

on E* satisfying the log-homogeneity condition

One has

Thus Oh (L) is almost positive iff 0 is almost plurisubharmonic on E*.

The total space of E* is the quotient E* = C x ([2 / (Z + Z) by the
dual action

The function cp gives rise to a function § on C x which is invariant

by and log-homogeneous w.r.t. (Wl, W2), and ~ is almost plurisub-
harmonic iff 0 is almost psh. Even more is true: Interpret X as the zero
section of the total space of L-1 and let be positive (1, I)-forms
on X, L-1. Then there are constants Cl, C2 &#x3E; 0 such that

Hence -EWL-1 implies and O~ &#x3E; im-

plies Consequently, instead of constructing currents
6/c - 0 it suffices to construct currents 0/c ~ 

E~ - 0, and functions rPk on CC x CC2 such that 8k and the ~~ are
invariant by and log-homogeneous w.r.t. (~1,~2)-

This can be done by using a gluing procedure developed in [Dern92]:
Choosing an appropriate partition of unity which is gi and g*T invariant
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and only depends on the imaginary part of x one gets the desired almost
plurisubharmonic functions ~k from plurisubharmonic functions

defined on stripes of type

and the associated currents T~ have arbitrary small negative part for

k - oc.

On the other hand, it follows from the construction that the restric-
tion of the induced currents Tk to the P1-fibers of X = P(E) remain &#x3E; EW
for some E &#x3E; 0.

Let T~ E be another sequence of currents representing a. If
A2 -= U C X is an open subset with coordinates zl , z2 such that the lines

{z1 = a} belong to P1-fibers and {z2 = bl are subsets of the leaves of the
foliation one can write

By the remark above,

for all a, and

by the numerical triviality (use as before the Schwarz inequality for the
terms with (}12 , (}2l ).

Since the numerical dimension of L is 1, one knows furthermore that

But
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hence the vanishing of the limits above implies

where A’ CC A is any open disk such that (AI)2 C U ~ A2.

Consequently, for almost all b E A’

(where
I 

. The definition of the numerically trivial foliation

requires that for all b E 0’. To prove this one

can use the same line of arguments as in the proof of the Local Key Lemma
for pseudo-effective classes: One tries to show that

Following the proof of Proposition 3.9 one sees that it is enough to show
that

where Ao,b is the disk with center in b/2 and radius Ib/21, and dY is a
volume element of x Ao,b.

As in the proof of Proposition 3.9 there is a bound M &#x3E; 0 such that

for all 1~ there is a disk Ok C C 0 containing A’ with

For the first term, look at the (1, 1 )-form q = idZ2 A dz2 and take a disk
A’ C C A" C C A. Then by the arguments above,

By Fubini, one gets a disk such that

and one concludes that the limit above is indeed 0.
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4.2. Mumford’s example

Back to our counter example at the beginning: it is easy to construct
a closed positive ( 1, 1 ) - current on L = OP1 (1) such that the leaves of the
associated numerically trivial foliation are 1-dimensional. Take a measure w
invariant w.r.t. the representation in PGL(2). This gives a measure
on (A x transversal to the foliation induced by the images of
A x ~p~. Averaging out the integration currents of the leaves with this
transverse measure gives an (even smooth) closed positive (1, 1)- current
in the first Chern class of L = which vanishes on the leaves but

not in any transverse direction.

Most of this example is explained in the introduction; the only
assertions not already discussed are the existence of a measure w in

ci(0pi(l)) invariant w.r.t. the unitary representation of 7f(C) in GL(2)
and the smoothness of the metric which results from averaging out the
integration currents of the leaves. But this is easy, too: Take the Haar

measure w on the Lie group U(2) which is absolutely continuous ([Die70],
[Ch.14]). Since U (2) operates transitively on I~1 this measure induces a

U(2)- invariant measure on the homogeneous quotient space P . Since
U(2) is compact it is possible to normalize w such that I~1 has measure 1.
Hence averaging over the integration currents of the leaves w.r.t. úJ gives
a smooth positive (1, 1) - form which is still in the first Chern class of

L = OIfD(E) (1). Since it is smooth it is a current with minimal singularities
on L, and obviously, this current is numerically trivial on the leaves.

On the other hand it is strictly positive on the P1-fibers, hence the
foliation is numerically trivial w.r.t. the cohomology class by the same
argument as in the first example.

Remark. -- The difference to the previous example is that the unitary
group is compact and consequently its Haar measure is finite. This is not
the case for the group of linear automorphisms generated by (zl , z2 ) ~
( zi + z2, z2).

4.3. I~2 blown up in 9 points.

Consider the following situation: Let C C I~2 be a smooth elliptic
curve and let pl , ... , p8 E C be sufficiently general points. The aim is to

study the numerically trivial foliation w.r.t. the anticanonical bundle -Kx
on varieties Xp = I~2 (pl, ... , ?P8?p) blown up in points pEe.
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Let Ei = ~r-1 (p2 ) be the exceptional divisor on X over Pi. First of all,
-Kx = Op2 (3) + £ Ez is nef and -K2X = 0. Next, the pencil of elliptic
curves on P~ through pl , ... , p8 has a base point q. So Xq = q)
is an elliptic fibration Jrq : Xq - P . The pull back of a smooth positive
metric on (1) gives a smooth semipositive hermitian metric on 
which is strictly positive in directions transverse to the fibers. Hence by
the same arguments as in the two examples above, the fibration is the

numerically trivial foliation w.r.t. -KXq .
For points p # q in C there is only one section in - K x p’ the strict

transform C’ of C. But if one considers torsion points (w.r.t. to q) of order
m on C then a calculation in [DPS96] shows that -mKx p defines again
an elliptic fibration over P~. This fibration yields a smooth semipositive
hermitian metric on -mKxp’ hence on and again the fibration is
the numerically trivial foliation w.r.t. -mKx,.

The question is: What happens if non-torsion points p E C are blown
up ? In particular: Is there always a smooth semipositive hermitian metric
on -KXp inducing a holomorphic foliation on Xp, which may be seen as
the limit of the fibrations of Xpk where the Pk are torsion points ? (The
last question was asked in [DPS96].) A strategy to answer it is to use the
theory of holomorphic foliations on surfaces, as developed e.g. in [BruOO].

DEFINITION 4.2. - A (holomorphic) foliation T on a compact com-
plex surface X is a coherent analytic rank 1 subsheaf Tg7 of the tangent
bundle Tx (the tangent bundle of the foliation) fitting into an exact se-
quence

for a suitable invertible sheaf NIF (the normal bundle of the foliation) and
an ideal sheaf Jz whose zero locus consists of isolated points called the

singularities Sing (0) 

Furthermore, one can easily show that NJ = Kx .

Numerically trivial foliations on surfaces X with .~’ of

rank 1 are such foliations: If ,~’ is not a line bundle then replace it by 
As a reflexive sheaf on a surface this is a line bundle [OSS80, 1.1.10], and
dualizing the inclusion .~’ C Tx twice shows that it is still a subsheaf of

Tx. Furthermore, T is locally integrable because it has rank 1, hence the
maps pi exist trivially.
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Let x be I~2 (pl , ... , p8) x C blown up in the diagonal

The fibers of X over p E C are just the Xp for all p. If there is an algebraic
family of foliations on the Xp such that over torsion points, the foliation
coincides with the fibration described above, then (at least generically)
the conormal line bundles should also fit into a family. But this is

impossible, as the following computation shows:

LEMMA 4.3. - Let C, q, Xp be as above, and let p be a torsion point
w.r. t. q of order m. Let NFp be the normal bundle of the foliation induced
by the liberation 7f p : Xp --+ pl. Then

Proof. - Let D be an irreducible component of a fiber of 7f = 7rp
with multiplicity lD . If q is a local non-vanishing 1- form on Ih1 then 7r* (r¡)
is a local section of vanishing of order lD - 1 on D. Hence,

The relative canonical bundle formula (for elliptic fibrations, see [Fri98])
tells that

where the sum is taken over all fibers F occuring with multiplicity 1F in
the fibration.

There are two differences between the two formulas: First, in the

relative canonical bundle formula occurs the term

Now, degL ~ 0, and deg L = 0 would imply that L is a torsion bundle on
P , hence it is trivial, and XP = C x a contradiction. If L is nontrivial,
a short calculation with spectral sequences shows that
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hence deg L = 1, and L = OWl (1) (see again [Fri98, Ch.VII]). This shows

and together with the relative canonical bundle formula this shows that
mC is the only multiple fiber.

The second difference is that some fibers may contain multiple com-
ponents, but are not multiple themselves. By the classification of singu-
lar fibers of elliptic fibrations this is only possible if there are -2-curves

([Fri98]). But on I~2 blown up in 9 points in general position, there are no
-2-curves. Hence

and the claim of the lemma follows. 0

The threefold X is also a counter example to equality of numerical
dimension and codimension of the leaves of the numerically trivial foliation
w.r.t. some pseudo-effective class: Set

where PI is the projection of C onto p2(pl,..., p8), p2 is

the projection of X onto C, r is any point on C and n &#x3E; 0 an integer. The
restriction of L to any fiber over p E C is the anticanonical bundle 

For n sufficiently big, L is nef: L is effective, since D = C x C ~- nXr is
contained in Consequently, to prove the nefness of L it suffices to show
that all curves E c C x C have non-negative intersection number with L.
To this purpose first get an overview over all curves on C x C: According
to the general theory of abelian surfaces the Picard number of C x C is 4 or
3 depending on whether C has complex multiplication or not ([BL99, 2.7].
Hence it suffices to look at the fibers of the two projections of C x C onto C,
the diagonal, and if necessary, on some other curve constructed as the graph
of complex multiplication in C x C. Since it is a graph of an isomorphism,
such a curve maps isomorphically to C under both projections.

Now, one has to compute the degree of the restriction of L to E. This
restriction may also be seen as the restriction of the divisor to such

an E. Let C’ be a sufficiently general curve in the pencil 1- 
Then the strict transform of C’ x C is an element of -~r* (pi K~2 (~1,...,p8 ) )
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and intersects C x C in ~q~ x C. Furthermore, EA intersects C x C in the
diagonal Acxc. Therefore,

where Er is the exceptional divisor over r in Xr. And L is nef if n is &#x3E; the
maximum of 1 (this is the intersection number of fibers C x {p} with the
diagonal) and the intersection number of the curve coming from complex
multiplication (if existing) with the diagonal. (The self intersection number
of the diagonal is 0 since the tangent bundles on C ~ and C x C

are trivial.)

PROPOSITION 4.4. - Let X, L be as above. Then the numerical

dimension v(L) of L is 2, but the numerically trivial foliation w.r.t. cl (L)
is the identy map.

Proof. To prove L 2 :~ 0, observe that L2 is represented by the
cycles in the expression above for This is not - 0, since the intersection
number with ~q~ x C is positive for n &#x3E; 1.

The numerically trivial foliation w.r.t. cl (L) cannot be the trivial
map onto a point, because in fibers Xp over torsion points p there are
curves which are not numerically trivial. Since immersed disks which do
not lie in a fiber of the projection onto C are not numerically trivial, the
only possible numerically trivial foliation w.r.t. cl (L) with 2-dimensional
leaves is the fibration onto C. But this is impossible by the same reason as
above. To exclude the possibility that the numerically trivial foliation has
1-dimensional leaves, one notes first that over torsion points p, the fibers
of 7f p : Xp - I~1 are numerically trivial: This is clear since these fibers F
are projective, hence fF Tk only depends on the cohomology class of the
Tk, and fF cl (L) is certainly 0.

This can be used to show that the 1-dimensional leaves of a nu-

merically trivial foliation must lie in the fibers Xp of x: Otherwise, let

ð. 3 ~ U C x be any open subset with coordinates x, zl , z2 such that the

projection onto C is given by the projection onto the first coordinate, and
the foliation is described by the projection onto the two last coordinates.
Choose x such that x = 0 corresponds to a torsion point po. Shrinking U
if necessary, one can suppose that the fibers of 7pro are smooth in U. But

then the Local Key Lemma for pseudo-effective classes implies that there
are 2-dimensional numerically trivial leaves, contradiction.
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Next one shows that the 1-dimensional leaves in fibers Xp, where p
is a torsion point, must be the fibers of 7f p : Xp - P : Take an ample line
bundle A on x. Since L is nef, A is also ample, and some multiple
is very ample. The global sections of this very ample line bundle generate
a smooth metric on Lk Q9 A whose strictly positive curvature form may be
written as k(Tk for some form Tk E cl (L) [- I 

Let pEe be any torsion point of order m and 7TP : Xp - p 1
the induced fibration. Let be a strictly positive
curvature form in Cl ( O~ (1) ). Then

But this means in particular that for any disk A C Xp not immersed into
a fiber of 

r 1 1 r

Hence the leaves of the numerically trivial foliation w.r.t. cl (L) coincide
with the fibers of 7rp in Xp.

But this is impossible, as shown above. 0

Remark. - This proposition does not exclude the possibility that

(some of) the Xp over non-torsion points p have a numerically trivial
foliation with 1-dimensional leaves.

Another result dealing with this type of foliations is

PROPOSITION 4.5 [Brunella]. - Let F be a foliation on a compact
algebraic surface X and suppose that .~ is tangent to a smooth elliptic
curve E, free of singularities of F. Then either E is a (multiple) fiber of an
elliptic fibration or, up to ramified coverings and birational maps, .~’ is the
suspension of a representation p : Aut (CP’), P an elliptic curve.

Appendix A. Singular foliations

One can define foliations on complex manifolds as involutive sub-
bundles of the tangent bundle. Then the classical theorem of Frobenius
asserts that through any point there is a unique integral complex sub-
manifold [Miy86]. Singular foliations may be defined as involutive coherent
subsheaves of the tangent bundle, which are furthermore saturated, that

is, their quotient with the tangent bundle is torsion free. In the points
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where the rank is maximal, one may use again the Frobenius theorem to

get leaves. Since in this paper the reasoning is always explicitely using the
leaves their existence is directly incorporated in the definition of a singular
foliation:

DEFINITION A.I.2013 Let X be an n- dimensional compact complex
manifold. Let Y C Tx be a saturated subsheaf of the tangent bundle with
maximal rank k and Z C X be the analytic subset Tx,x
is not injective.

Y induces a singular foliation described by the following data: X - Z
is covered by open sets such that for the smooth holomorphic
map pi : Ui __+ An-k coming from the 

Such a foliation will be denoted by {~", (Ui, 

Next, one defines the inclusion relation for numerically trivial folia-
tions as above

DEFINITION A.2. - A numerically trivial foliation is contained in

another one,

there is a Zariski open set U E X such that C 91 u,
In particular this means that the leaves of {~, are contained

in those of {9, (Vj, qj) 1.
The next aim is to construct a common refinement

of two singular foliations

To this purpose one has first to analyze the local picture when two foliations
meet transversally everywhere: Let W be a complex manifold with two

isomorphisms ql : : W -~ A’, q2 : W - A’. Let pi : W 

p2 : 1 be the composition of ql, q2 with the projections of On
onto the last n - k resp. n - l factors.



934

Suppose that the and p2 - fibers intersect transversally every-
where.

If n x k + ~ by choosing appropriate coordinates PI will be the

projection on the first n - 1~ coordinates while p2 is the projection on the
last n - l coordinates. In particular, the smallest fibration p whose fibers
contain all fibers of pi and p2 is the trivial fibration onto a point.

So suppose from now on that n &#x3E; k + l. Again by choosing appro-
priate coordinates via the implicit function theorem and possibly further

restricting W one can describe the configuration of the two sets of fibers
in the following way (look at the next figure) : The horizontal sections of
PI consist of p2 - fibers which are parallel hyperplanes, and over each point
~ E An-k the p2- fibers through the points in project into a pencil
of hyperplanes through a common central hyperplane A’k C An-k con-
t aining y.

This cemtral hyperplane is isomorphic to Ak’ for all y and
.... ,

different central hyperplanes are parallel in
be the projection with the central hyperplanes as fibers. Consequently the
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new projection

is the smallest fibration whose fibers contain both the fibers of PI and p2.

So outside the singularities of F and g and the locus where the leaves
of the foliation do not intersect transversally or even coincide, it is clear

how to define the common refinement.

To get a better feeling for the locus of the other points, look at the
following two-dimensional toy example, where the two foliations are marked
with dotted and dashed lines.

At least, the exceptional points form an analytic subset of X: A point
x E U, n V. is contained in this set iff the differential of pi n Th -

x A’-’ in x has not full rank, that is iff all maximal minors of this
differential vanish in x. But it still remains the task to define a saturated

subsheaf C Tx which locally coincides with the relative tangential sheaf
of the projections rk : Qn-m.

To do this one goes back to the purely algebraic definition of (singular)
foliations: The subsheaf 0 C Tx induces such a foliation iff it is involutive,
that is, closed under the Lie bracket, which means 0] C .~. Then there
is a natural candidate for a subsheaf defining the union of the foliations

given by JF and ~: the smallest involutive subsheaf C Tx containing both
F and!g. It exists because it may be constructed as the subsheaf generated

. - - - - po po -, -, -- - -., r- - _’"I" -

LEMMA A.3. - Let

be two singular foliations ‘on an n-dimensional complex manifold X. Let
x be a point not in the analytic subset Z C X consisting of the singular
locus of .~’, ~ and the points where the leaves of . and g do not intersect
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transversally. Then on the common refinement rk : around x

constructed as above, the smallest involutive subsheaf 1í containing both
.~ and 9 coincides with the relative tangential sheaf of 

Proof. Since the two foliations intersect transversally around x, it
is obvious that the smallest saturated involutive subsheaf in contain-

ing both and is the relative tangent sheaf of the projection r.
Glueing together one gets a saturated involutive subsheaf H x- z c Tx-z
on the open set X - Z.

Let U ^--’ A’ be a neighborhood of some point z E Z, and let

H = ~ f = 01, f C O(U), be an analytic hyperplane in U containing
the analytic subset Z n U. Now, O(U - H) = and one can define

the sections of H on U as the intersection

in Tx(U - ~) ~ O(U)-. Since Tx(U) and H--z(U - H) are involu-
tive, H(U) C is closed under the Lie bracket, too. Furthermore,
H(U) is the smallest saturated submodule of Tx(U) such that

~ ( U) f = H), as the following algebraic lemma shows.

Finally, since the same is true for and g(U), they are both
contained in ~-iC(U). D

LEMMA A.4. - Let R be a corrlmutaive integral ring, f E R,
and Mf c R f a su bmod ule such that is torsion free. Then

M = Mf nR kis the smallest submodule of R k such that M f - Mf
and is torsion free.

Proof. If N C Mf C R such that there exists m E M - N, but
still N f = Mf, then m E N f . Hence there is an n C N and 1 C- N such that
m == 2013 or m - f = n. But then f is a torsion element of D

This shows that is really a singular
foliation.
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