Local well-posedness for the incompressible Euler equations in the critical Besov spaces
Annales de l'Institut Fourier, Volume 54 (2004) no. 3, pp. 773-786.

In this paper we establish the existence and uniqueness of the local solutions to the incompressible Euler equations in N , N3, with any given initial data belonging to the critical Besov spaces B p,1 N/p+1 . Moreover, a blowup criterion is given in terms of the vorticity field.

Dans cet article on établit l’existence et l’unicité de la solution locale de l’équation d’Euler incompressible dans N , N3, avec des données initiales quelconques appartenant aux espaces de Besov critique B p,1 N/p+1 . De plus, un critère d’explosion est donné en terme du champ de vorticités.

DOI: 10.5802/aif.2033
Classification: 76D03, 35Q35, 46E35.
Keywords: well-posedness, Euler equations, Besov spaces
Mot clés : bien-posé, equations d'Euler, espaces de Besov

Zhou, Yong 1

1 Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)
@article{AIF_2004__54_3_773_0,
     author = {Zhou, Yong},
     title = {Local well-posedness for the incompressible {Euler} equations in the critical {Besov} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {773--786},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {3},
     year = {2004},
     doi = {10.5802/aif.2033},
     zbl = {1097.35118},
     mrnumber = {2097422},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2033/}
}
TY  - JOUR
AU  - Zhou, Yong
TI  - Local well-posedness for the incompressible Euler equations in the critical Besov spaces
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 773
EP  - 786
VL  - 54
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2033/
DO  - 10.5802/aif.2033
LA  - en
ID  - AIF_2004__54_3_773_0
ER  - 
%0 Journal Article
%A Zhou, Yong
%T Local well-posedness for the incompressible Euler equations in the critical Besov spaces
%J Annales de l'Institut Fourier
%D 2004
%P 773-786
%V 54
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2033/
%R 10.5802/aif.2033
%G en
%F AIF_2004__54_3_773_0
Zhou, Yong. Local well-posedness for the incompressible Euler equations in the critical Besov spaces. Annales de l'Institut Fourier, Volume 54 (2004) no. 3, pp. 773-786. doi : 10.5802/aif.2033. https://aif.centre-mersenne.org/articles/10.5802/aif.2033/

[1] J.-T. Beale; T. Kato; A. Majda Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys, Volume 94 (1984) no. 1, pp. 61-66 | MR | Zbl

[2] J.-M. Bony Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Ecole Norm. Sup. (4), Volume 14 (1981) no. 2, pp. 209-246 | Numdam | MR | Zbl

[3] D. Chae On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces., Comm. Pure Appl. Math, Volume 55 (2002) no. 5, pp. 654-678 | MR | Zbl

[4] J.-Y. Chemin Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace, J. Math. Pures Appl. (9), Volume 71 (1992) no. 5, pp. 407-417 | MR | Zbl

[5] J.-Y. Chemin Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, 14, The Clarendon Press, Oxford University Press, New York, 1998 | MR | Zbl

[6] R. Danchin Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math, Volume 141 (2000) no. 3, pp. 579-614 | MR | Zbl

[7] R. Danchin Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, Volume 26 (2001) no. 7-8, pp. 1183-1233 | MR | Zbl

[8] M. Frazier; B. Jawerth; G. Weiss Littlewood-Paley theory and the study of function spaces (CBMS Regional Conference Series in Mathematics), Volume 79 (1991) | Zbl

[9] T. Kato Nonstationary flows of viscous and ideal fluids in R 3 , J. Functional Analysis, Volume 9 (1972), pp. 296-305 | MR | Zbl

[10] T. Kato; G. Ponce Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math, Volume 41 (1988) no. 7, pp. 891-907 | MR | Zbl

[11] H. Kozono; Y. Taniuchi Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys., Volume 214 (2000) no. 1, pp. 191-200 | MR | Zbl

[12] H. Kozono; T. Ogawa; Y. Taniuchi The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z, Volume 242 (2002), pp. 251-278 | MR | Zbl

[13] A. Majda Vorticity and the mathematical theory of incompressible fluid flow, Frontiers of the mathematical sciences (New York, 1985) (Comm. Pure Appl. Math.), Volume 39, suppl. (1986), p. S186-S220 | Zbl

[14] T. Runst; W. Sickel Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations., de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter \& Co., Berlin, 1996 | MR | Zbl

[15] E.M. Stein Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III (Princeton Mathematical Series), Volume 43 (1993) | Zbl

[16] H. Triebel Theory of function spaces. II., Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, 1992 | Zbl

[17] M. Vishik Hydrodynamics in Besov spaces., Arch. Ration. Mech. Anal, Volume 145 (1998) no. 3, pp. 197-214 | MR | Zbl

[18] M. Vishik Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup. (4), Volume 32 (1999) no. 6, pp. 769-812 | Numdam | MR | Zbl

Cited by Sources: