We provide a general lower bound on the dynamics of one dimensional Schrödinger operators in terms of transfer matrices. In particular it yields a non trivial lower bound on the transport exponents as soon as the norm of transfer matrices does not grow faster than polynomially on a set of energies of full Lebesgue measure, and regardless of the nature of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c) random decaying potential are provided. We also develop some general analysis of wave- packets that enables one to characterize transports exponents at low and large moments.
Nous fournissons une borne inférieure générale pour la dynamique des opérateurs de Schrödinger unidimensionnels en fonction des matrices de transfert. En particulier, cela donne une borne inférieure non triviale pour les exposants de transport dès que la norme des matrices de transfert ne croît pas plus vite que polynômialement sur un ensemble d'énergie de mesure de Lebesgue pleine, et ce indépendamment de la nature du spectre. Des applications avec des hamiltoniens avec des potentiels a) épars, b) quasi-périodique, c) aléatoires décroissant sont données. De plus, nous développons dans un contexte général une analyse des paquets d'ondes qui permet de caractériser les exposants de transport à petit et grand moments.
Keywords: Schrödinger operators, transfer matrices, transport exponents
Mot clés : opérateur de Schrödinger, matrices de transfert, exposants de transport
Germinet, François 1; Kiselev, Alexander ; Tcheremchantsev, Serguei 
@article{AIF_2004__54_3_787_0, author = {Germinet, Fran\c{c}ois and Kiselev, Alexander and Tcheremchantsev, Serguei}, title = {Transfer matrices and transport for {Schr\"odinger} operators}, journal = {Annales de l'Institut Fourier}, pages = {787--830}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {3}, year = {2004}, doi = {10.5802/aif.2034}, zbl = {1074.81019}, mrnumber = {2097423}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2034/} }
TY - JOUR AU - Germinet, François AU - Kiselev, Alexander AU - Tcheremchantsev, Serguei TI - Transfer matrices and transport for Schrödinger operators JO - Annales de l'Institut Fourier PY - 2004 SP - 787 EP - 830 VL - 54 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2034/ DO - 10.5802/aif.2034 LA - en ID - AIF_2004__54_3_787_0 ER -
%0 Journal Article %A Germinet, François %A Kiselev, Alexander %A Tcheremchantsev, Serguei %T Transfer matrices and transport for Schrödinger operators %J Annales de l'Institut Fourier %D 2004 %P 787-830 %V 54 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2034/ %R 10.5802/aif.2034 %G en %F AIF_2004__54_3_787_0
Germinet, François; Kiselev, Alexander; Tcheremchantsev, Serguei. Transfer matrices and transport for Schrödinger operators. Annales de l'Institut Fourier, Volume 54 (2004) no. 3, pp. 787-830. doi : 10.5802/aif.2034. https://aif.centre-mersenne.org/articles/10.5802/aif.2034/
[BCM] Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal. Appl, Volume 213 (1997) no. 2, pp. 698-722 | MR | Zbl
[BGK] Sub-exponential decay of operator kernels for functions of generalized Schrödinger operators (to appear in Proc. Amer. Math. Soc) | MR | Zbl
[BGSB] Phase-averaged transport for quasi-periodic Hamiltonians, Comm. Math. Phys, Volume 227 (2002) no. 3, pp. 515-539 | MR | Zbl
[BGT1] Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Duke Math. J, Volume 110 (2001), pp. 161-193 | MR | Zbl
[BGT2] Quantum diffusion and generalized fractal dimensions: the case, Actes des journées EDP de Nantes (2000)
[BGT3] Generalized fractal dimensions: equivalence and basic properties, J. Math. Pure et Appl, Volume 80 (2001), pp. 977-1012 | MR | Zbl
[BSB] Subdiffusive quantum transport for 3-D Hamiltonians with absolutely continuous spectra, J. Stat. Phys., Volume 99 (2000), pp. 587-594 | MR | Zbl
[C] Connection between quantum dynamics and spectral properties of time evolution operators, Differential Equations and Applications in Mathematical Physics (1993), pp. 59-69 | Zbl
[CFKS] Schrödinger Operators, Springer-Verlag, 1987 | Zbl
[CL] Spectral theory of random Schrödinger operators, Birkhaüser, Boston, 1990 | MR | Zbl
[CM] Fractal Dimensions and Quantum Evolution Associated with Sparse Potential Jacobi Matrices, Long time behaviour of classical and quantum systems, (Bologna, 1999) (Ser. Concr. Appl. Math.), Volume 1 (2001), pp. 107-123 | Zbl
[Da] Spectral Theory and Differential Operators, Cambridge University Press, 1995 | MR | Zbl
[DR1] What is localization?, Phys. Rev. Lett., Volume 75 (1995), pp. 117-119
[DR2] Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations and localization, J. Anal. Math., Volume 69 (1996), pp. 153-200 | MR | Zbl
[DRMS] Operators with singular continuous spectrum. II. Rank one operators, Comm. Math. Phys, Volume 165 (1994), pp. 59-67 | MR | Zbl
[DT] Power-law bounds on transfer matrices and quantum dynamics in one dimension, Comm. Math. Phys, Volume 236 (2003), pp. 513-534 | MR | Zbl
[G] Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett, Volume 10 (1989), pp. 95-100
[G] On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett., Volume 21 (1993), pp. 729-733
[GK1] Decay of operator-valued kernels of functions of Schrödinger and other operators, Proc. Amer. Math. Soc, Volume 131 (2003), pp. 911-920 | MR | Zbl
[GK2] A characterization of the Anderson metal-insulator transport transition (to appear in Duke Math. J) | MR | Zbl
[GK3] The Anderson metal-insulator transport transition, Contemp. Math, Volume 339 (2003), pp. 43-57 | MR | Zbl
[GP] On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl, Volume 128 (1987), pp. 30-56 | MR | Zbl
[GSB1] Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J, Volume 5 (1999) no. paper 1 | MR | Zbl
[GSB2] Intermittent lower bound on quantum diffusion, Lett. Math. Phys, Volume 49 (1999), pp. 317-324 | MR | Zbl
[GT] Generalized fractal dimensions on the negative axis for compactly supported measures (preprint) | Zbl
[HS] Equation de Schrödinger avec champ magnétique et équation de Harper in Schrödinger Operators (Lectures Notes in Physics), Volume 345 (1989), pp. 118-197 | Zbl
[JL] Power-law subordinacy and singular spectra. I. Half-line operators, Acta Math, Volume 183 (1999), pp. 171-189 | MR | Zbl
[JSBS] Delocalization in polymer models, Comm. Math. Phys, Volume 233 (2003), pp. 27-48 | MR | Zbl
[KKS] Generalized Eigenfunctions for Waves in Inhomogeneous Media, J. Funct. Anal, Volume 190 (2002), pp. 255-291 | MR | Zbl
[KL] Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains, Duke Math. J., Volume 102 (2000), pp. 125-150 | MR | Zbl
[KLS] Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators, Commun. Math. Phys, Volume 194 (1997), pp. 1-45 | MR | Zbl
[KrR] Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure, Comm. Math. Phys (2001), pp. 509-532 | MR | Zbl
[La] Quantum dynamics and decomposition of singular continuous spectrum, J. Funct. Anal, Volume 142 (1996), pp. 406-445 | MR | Zbl
[LS] Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math., Volume 135 (1999), pp. 329-367 | MR | Zbl
[Ma] Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D, Volume 103 (1997), pp. 576-589
[Ma] Wave propagation in almost-periodic structures, Physica D, Volume 109 (1997), pp. 113-127 | Zbl
[P] Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Univ. Chicago Press, 1996 | MR | Zbl
[P1] Singular continuous measures in scattering theory, Comm. Math. Phys, Volume 60 (1978) no. 1, pp. 13-36 | MR | Zbl
[PF] Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Heidelberg, 1992 | MR | Zbl
[SBB] Anomalous transport: a mathematical framework, Rev. Math. Phys, Volume 10 (1998), pp. 1-46 | MR | Zbl
[Si1] Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. AMS, Volume 124 (1996), pp. 3361-3369 | MR | Zbl
[Si2] Spectral Analysis and rank one perturbations and applications (CRM Lecture Notes), Volume 8 (1995), pp. 109-149 | Zbl
[SiSp] Trace class perturbations and the absence of absolutely continuous spectra, Comm. Math. Phys, Volume 125 (1989) no. 1, pp. 113-125 | MR | Zbl
[SiSt] Operators with singular continuous spectrum. V. Sparse potentials, Proc. Amer. Math. Soc, Volume 124 (1996) no. 7, pp. 2073-2080 | MR | Zbl
[T] Eigenfunction Expansions, Oxford University Press, Oxford, 1962 | MR | Zbl
[Tc1] Mixed lower bounds in quantum dynamics, J. Funct. Anal, Volume 197 (2003), pp. 247-282 | MR | Zbl
[Tc2] Dynamical analysis of Schrödinger operators with growing sparse potentials (to appear in Commun. Math. Phys) | MR | Zbl
[We] Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer-Verlag, 1987 | MR | Zbl
[Z] Sparse potentials with fractional Hausdorff dimension (to appear in J. Funct. Anal) | MR | Zbl
Cited by Sources: