Locally connected exceptional minimal sets of surface homeomorphisms
Annales de l'Institut Fourier, Volume 54 (2004) no. 3, pp. 711-731.

We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the surface is different from the torus, such a minimal set is either finite or a finite disjoint union of simple closed curves. On the torus, such a set can admit also a structure similar to that of the Sierpiński curve.

On examine les ensembles minimaux exceptionnels localement connexes des homéomorphismes des surfaces. Si la surface est différente de tore, ils sont finis ou composés de courbes simples fermés. Dans le tore, ils peuvent aussi prendre la forme similaire à l’ensemble de Sierpiński.

DOI: 10.5802/aif.2031
Classification: 37E30,  37B45
Keywords: locally connected minimal sets, surface homeomorphisms
@article{AIF_2004__54_3_711_0,
     author = {Bi\'s, Andrzej and Nakayama, Hiromichi and Walczak, Pawel},
     title = {Locally connected exceptional minimal sets of surface homeomorphisms},
     journal = {Annales de l'Institut Fourier},
     pages = {711--731},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {3},
     year = {2004},
     doi = {10.5802/aif.2031},
     mrnumber = {2097420},
     zbl = {1055.37045},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2031/}
}
TY  - JOUR
TI  - Locally connected exceptional minimal sets of surface homeomorphisms
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 711
EP  - 731
VL  - 54
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2031/
UR  - https://www.ams.org/mathscinet-getitem?mr=2097420
UR  - https://zbmath.org/?q=an%3A1055.37045
UR  - https://doi.org/10.5802/aif.2031
DO  - 10.5802/aif.2031
LA  - en
ID  - AIF_2004__54_3_711_0
ER  - 
%0 Journal Article
%T Locally connected exceptional minimal sets of surface homeomorphisms
%J Annales de l'Institut Fourier
%D 2004
%P 711-731
%V 54
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2031
%R 10.5802/aif.2031
%G en
%F AIF_2004__54_3_711_0
Biś, Andrzej; Nakayama, Hiromichi; Walczak, Pawel. Locally connected exceptional minimal sets of surface homeomorphisms. Annales de l'Institut Fourier, Volume 54 (2004) no. 3, pp. 711-731. doi : 10.5802/aif.2031. https://aif.centre-mersenne.org/articles/10.5802/aif.2031/

[1] J.M. Aarts; L.G. Oversteegen The dynamics of the Sierpi\'nski curve, Proc. Amer. Math. Soc., Tome 120 (1994), pp. 965-968 | MR | Zbl

[2] A. Biś; H. Nakayama; P. Walczak Modelling minimal foliated spaces with positive entropy (Preprint)

[3] H. Chu Algebraic topology criteria for minimal sets, Proc. Amer. Math. Soc., Tome 13 (1962), pp. 503-508 | MR | Zbl

[4] R.J. Daverman Decompositions of manifolds, Pure and Applied Mathematics, Tome vol. 124, Academic Press, New York, 1986 | MR | Zbl

[5] A. Fathi; M. Herman Existence de difféomorphismes minimaux, Astérisque, Tome 49 (1977), pp. 37-59 | MR | Zbl

[6] E.E. Floyd A nonhomogeneous minimal set, Bull. Amer. Math. Soc., Tome 55 (1949), pp. 957-960 | MR | Zbl

[7] W.H. Gottschalk; G.A. Hedlund Topological dynamics Tome vol. 36, Amer. Math. Soc. Colloq. Publ., 1955 | MR | Zbl

[8] M. Handel A pathological area preserving $\cal C^\infty$ diffeomorphisms of the plane, Proc. Amer. Math. Soc., Tome 86 (1982), pp. 163-168 | MR | Zbl

[9] H. Kato The nonexistence of expansive homeomorphisms of Peano continua in the plane, Topology Appl., Tome 34 (1990), pp. 161-165 | MR | Zbl

[10] A. Katok; B. Hasselblatt Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Tome vol. 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[11] S. Kim On low dimensional minimal sets, Pacific Math. J., Tome 43 (1972), pp. 171-174 | MR | Zbl

[12] K. Kuratowski Topology II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1968 | MR

[13] P.D. McSwiggen Diffeomorphisms of the torus with wandering domains, Proc. Amer. Math. Soc., Tome 117 (1993), pp. 1175-1186 | MR | Zbl

[14] R.L. Moore Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc., Tome 27 (1925), pp. 416-428 | JFM | MR

[15] A. Norton An area approach to wandering domains for smooth surface endomorphisms, Ergodic Theory Dynam. Systems, Tome 11 (1991), pp. 181-187 | MR | Zbl

[16] A. Norton; D. Sullivan Wandering domains and invariant conformal structures for mappings of the 2-torus, Ann. Acad. Sci. Fenn. Math., Tome 21 (1996), pp. 51-68 | MR | Zbl

[17] A.N. Starkov Minimal sets of homogeneous flows, Ergodic Theory Dynam. Systems, Tome 15 (1995), pp. 361-377 | MR | Zbl

[18] G.T. Whyburn Topological characterization of the Sierpi\'nski curve, Fund. Math., Tome 45 (1958), pp. 320-324 | MR | Zbl

Cited by Sources: