For smooth bounded pseudoconvex domains in , we provide geometric conditions on the boundary which imply compactness of the -Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.
On donne, pour les domaines lisses bornés pseudoconvexes de , des conditions géométriques concernant le bord qui entraînent la compacité de l’opérateur -Neumann. Il est remarquable que la preuve de la compacité ne procède pas par verification des conditions suffisantes bien connues de type théorie du potentiel.
Keywords: -Neumann operator, compactness, geometric conditions
@article{AIF_2004__54_3_699_0, author = {Straube, Emil}, title = {Geometric conditions which imply compactness of the $${-Neumann} operator}, journal = {Annales de l'Institut Fourier}, pages = {699--710}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {3}, year = {2004}, doi = {10.5802/aif.2030}, mrnumber = {2097419}, zbl = {1061.32028}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2030/} }
TY - JOUR TI - Geometric conditions which imply compactness of the $$-Neumann operator JO - Annales de l'Institut Fourier PY - 2004 DA - 2004/// SP - 699 EP - 710 VL - 54 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2030/ UR - https://www.ams.org/mathscinet-getitem?mr=2097419 UR - https://zbmath.org/?q=an%3A1061.32028 UR - https://doi.org/10.5802/aif.2030 DO - 10.5802/aif.2030 LA - en ID - AIF_2004__54_3_699_0 ER -
Straube, Emil. Geometric conditions which imply compactness of the $$-Neumann operator. Annales de l'Institut Fourier, Volume 54 (2004) no. 3, pp. 699-710. doi : 10.5802/aif.2030. https://aif.centre-mersenne.org/articles/10.5802/aif.2030/
[10] The Neumann Problem for the Cauchy--Riemann Complex, Annals of Mathematics Studies, Tome 75, Princeton University Press, 1972 | MR | Zbl
[3] Boundary behavior of holomorphic functions on weakly pseudoconvex domains (1978) (Princeton University Ph.D. Thesis) | Zbl
[9] Regularité pour $\bar\partial$ dans quelques domaines faiblement pseudo-convexes, Journal of Differential Geometry, Tome 13 (1978), pp. 559-576 | Zbl
[4] Global regularity of the $\bar\partial$-Neumann problem, Complex Analysis of Several Variables (Proc. Symp. Pure Math.) Tome 41 (1984), pp. 39-49 | Zbl
[5] Subelliptic estimates for the $\bar\partial$-Neumann problem on pseudoconvex domains, Annals of Mathematics (2), Tome 126 (1987), pp. 131-191 | MR | Zbl
[17] Une classe de domaines pseudoconvexes, Duke Math. Journal, Tome 55 (1987), pp. 299-319 | MR | Zbl
[1] Small sets of infinite type are benign for the $\bar\partial$-Neumann problem, Proceedings of the American Math. Soc, Tome 103 (1988), pp. 569-578 | MR | Zbl
[19] Weakly Differentiable Functions, Graduate Texts in Mathematics, Tome 120, Springer-Verlag, 1989 | MR | Zbl
[8] Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993 | MR | Zbl
[15] A Hartogs domain with no analytic discs in the boundary for which the $\bar\partial$-Neumann problem is not compact (1997) (University of California Los Angeles Ph.D. Thesis) | MR | Zbl
[18] Plurisubharmonic functions and subellipticity of the $\hbox\bar\partial$-Neumann problem on non-smooth domains, Mathematical Research Letters, Tome 4 (1997), pp. 459-467 | MR | Zbl
[11] Compactness of the $\bar\partial$-Neumann problem on convex domains, Journal of Functional Analysis, Tome 159 (1998), pp. 629-641 | Zbl
[2] Global regularity of the $\bar\partial$-Neumann problem: a survey of the $\cl L^¨2$-Sobolev theory, Several Complex Variables (MSRI Publications) Tome 37 (1999) | MR | Zbl
[14] On the compactness of the $\overline\partial$-Neumann operator, Ann. Fac. Sci. Toulouse Math (6), Tome 9 (2000), pp. 415-432 | MR | Zbl
[6] Partial Differential Equations in Several Complex Variables, Studies in Advanced Mathematics, American Mathematical Society/International Press, 2001 | Numdam | MR | Zbl
[12] Compactness in the $\bar\partial$-Neumann problem, Complex Analysis and Geometry, Tome 9 (2001), pp. 141-160
[13] Semi-classical analysis of Schrödinger operators and compactness in the $\bar\partial$-Neumann problem, Journal of Math. Analysis and Applications, Tome 271 (2002) no. 1, pp. 267-282 | MR | Zbl
[16] A sufficient condition for compactness of the $\bar\partial$-Neumann problem, Journal of Functional Analysis, Tome 195 (2002), pp. 190-205 | MR | Zbl
[7] Compactness in the $\bar\partial$-Neumann problem, magnetic Schrödinger operators, and the Aharonov--Bohm effect (2003) (preprint) | MR | Zbl
Semi-classical analysis of Schrödinger operators and compactness in the $\bar\partial$-Neumann problem. (correction), J. Math. Anal. Appl., Tome 280 (2003) no. 1, p. 195-196 | MR | Zbl
Cited by Sources: