[Une définition générale de l'opérateur de Monge-Ampère complexe]
On définit et étudie le domaine de définition de l'opérateur de Monge-Ampère complexe. Ce domaine est le plus général possible si on impose que l'opérateur soit continu pour les limites décroissantes. Ce domaine est donné à l'aide d'approximation par certaines fonctions plurisousharmoniques jouant le rôle de "fonctions test". On démontre des estimations, on étudie un théorème de décomposition pour les mesures positives et on résout le problème de Dirichlet.
We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.
Keywords: complex Monge-Ampère operator, plurisubharmonic function
Mot clés : opérateur de Monge-Ampère complexe, fonction plurisousharmonique
Cegrell, Urban 1
@article{AIF_2004__54_1_159_0, author = {Cegrell, Urban}, title = {The general definition of the complex {Monge-Amp\`ere} operator}, journal = {Annales de l'Institut Fourier}, pages = {159--179}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {1}, year = {2004}, doi = {10.5802/aif.2014}, zbl = {1065.32020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2014/} }
TY - JOUR AU - Cegrell, Urban TI - The general definition of the complex Monge-Ampère operator JO - Annales de l'Institut Fourier PY - 2004 SP - 159 EP - 179 VL - 54 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2014/ DO - 10.5802/aif.2014 LA - en ID - AIF_2004__54_1_159_0 ER -
%0 Journal Article %A Cegrell, Urban %T The general definition of the complex Monge-Ampère operator %J Annales de l'Institut Fourier %D 2004 %P 159-179 %V 54 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2014/ %R 10.5802/aif.2014 %G en %F AIF_2004__54_1_159_0
Cegrell, Urban. The general definition of the complex Monge-Ampère operator. Annales de l'Institut Fourier, Tome 54 (2004) no. 1, pp. 159-179. doi : 10.5802/aif.2014. https://aif.centre-mersenne.org/articles/10.5802/aif.2014/
[1] Survey of pluripotential theory. Several complex variables, Proceedings of the Mittag-Leffler Inst. (1987-88) (Mathematical Notes), Volume 38 (1994), pp. 48-95 | MR | Zbl
[2] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math, Volume 37 (1976), pp. 1-44 | MR | Zbl
[3] A new capacity for plurisubharmonic functions, Acta Math, Volume 149 (1982), pp. 1-40 | MR | Zbl
[4] Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. Math, Volume 41 (1993), pp. 151-157 | MR | Zbl
[5] The complex Monge-Ampère operator in hyperconvex domains, Annali della Scuola Normale Superiore di Pisa, Volume 23 (1996) no. 4, pp. 721-747 | Numdam | MR | Zbl
[6] Potentials in pluripotential theory, Ann. de la Fac. Sci. de Toulouse (6), Volume 8 (1999) no. 3, pp. 439-469 | Numdam | MR | Zbl
[7] Pluricomplex energy, Acta Mathematica, Volume 180 (1998) no. 2, pp. 187-217 | MR | Zbl
[8] Explicit calculation of a Monge-Ampère measure, Actes des rencontres d'analyse complexe (Université de Poitiers, 25-28 mars 1999) (2000), pp. 39-42 | MR | Zbl
[9] Convergence in capacity (2001) (Isaac Newton Institute for Mathematical Sciences, Preprint Series NI01046-NPD, Cambridge)
[10] Exhaustion functions for hyperconvex domains (2001) (Research reports, No 10, Mid Sweden University)
[11] The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation invariant measures, Michigan. Math. J, Volume 41 (1994), pp. 563-569 | MR | Zbl
[12] Integration by parts for currents and applications to the relative capacity and Lelong numbers, Mathematica, Volume 39(62) (1997) no. 1, pp. 45-57 | MR | Zbl
[13] Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z, Volume 194 (1987), pp. 519-564 | MR | Zbl
[14] Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann, Volume 257 (1981), pp. 171-184 | MR | Zbl
[15] The complex Monge-Ampère equation, Acta Mathematica, Volume 180 (1998), pp. 69-117 | MR | Zbl
[16] Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J, Volume 52 (1985), pp. 157-197 | MR | Zbl
[17] Extremal plurisubharmonic functions and capacities in , Sophia Kokyuroko in Mathematics (1982) | Zbl
[18] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech, Volume 18 (1968), pp. 143-148 | MR | Zbl
[19] Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat, Volume 39 (2001), pp. 181-200 | MR | Zbl
[20] Complex Monge-Ampère equations with a countable number of singular points, Indiana Univ. Math. J, Volume 48 (1999), pp. 749-765 | MR | Zbl
[21] Pluricomplex Green functions and the Dirichlet problem for the Complex Monge-Ampère operator, Michigan Math. J, Volume 44 (1997), pp. 579-596 | MR | Zbl
Cité par Sources :