Let be a Banach space with a countable unconditional basis (e.g., ), an open set and complex-valued holomorphic functions on , such that the Fréchet differentials are linearly independant over at each . We suppose that is a complete intersection and we consider a holomorphic Banach vector bundle . If (resp.) denote the ideal of germs of holomorphic functions on that vanish on (resp. the sheaf of germs of holomorphic sections of ), then the sheaf cohomology groups , vanish for all .
On démontre par exemple que dans un espace de Hilbert séparable au-dessus d’une intersection complète lisse tous les fibrés vectoriels holomorphes sont acycliques, et le faisceau idéal de est au-dessus des voisinages pseudoconvexes ouverts de assez petit.
Keywords: analytic cohomology, complete intersections
Mot clés : cohomologie analytique, intersection complète
@article{AIF_2004__54_1_147_0, author = {Patyi, Imre}, title = {Analytic cohomology of complete intersections in a {Banach} space}, journal = {Annales de l'Institut Fourier}, pages = {147--158}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {1}, year = {2004}, doi = {10.5802/aif.2013}, zbl = {1080.32017}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2013/} }
TY - JOUR AU - Patyi, Imre TI - Analytic cohomology of complete intersections in a Banach space JO - Annales de l'Institut Fourier PY - 2004 SP - 147 EP - 158 VL - 54 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2013/ DO - 10.5802/aif.2013 LA - en ID - AIF_2004__54_1_147_0 ER -
%0 Journal Article %A Patyi, Imre %T Analytic cohomology of complete intersections in a Banach space %J Annales de l'Institut Fourier %D 2004 %P 147-158 %V 54 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2013/ %R 10.5802/aif.2013 %G en %F AIF_2004__54_1_147_0
Patyi, Imre. Analytic cohomology of complete intersections in a Banach space. Annales de l'Institut Fourier, Volume 54 (2004) no. 1, pp. 147-158. doi : 10.5802/aif.2013. https://aif.centre-mersenne.org/articles/10.5802/aif.2013/
[DG] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann, Volume 140 (1960), pp. 94-123 | MR | Zbl
[L1] The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc, Volume 11 (1998), pp. 485-520 | MR | Zbl
[L2] The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc, Volume 12 (1999), pp. 775-793 | MR | Zbl
[L3] The Dolbeault complex in infinite dimensions III, Invent. Math, Volume 142 (2000), pp. 579-603 | MR | Zbl
[L4] Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1293-1304 | Numdam | MR | Zbl
[L5] Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 2, pp. 423-442 | Numdam | MR | Zbl
[L6] Analytic cohomology in Fréchet spaces (Communications in Analysis and Geometry, to appear) | MR | Zbl
[L7] Plurisubharmonic domination (J. Amer. Math. Soc., to appear) | MR | Zbl
[L8] Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math., to appear | MR | Zbl
[P1] On the -equation in a Banach space, Bull. Soc. Math. France, Volume 128 (2000), pp. 391-406 | Numdam | MR | Zbl
[P2] Analytic cohomology vanishing in infinite dimensions (2000) (Ph. D. Thesis, Purdue University)
[P3] On a splitting problem, Bull. Sci. Math, Volume 126 (2002), pp. 631-636 | MR | Zbl
[P4] On the Oka principle in a Banach space I, Math. Ann, Volume 326 (2003), pp. 417-441 | MR | Zbl
[P5] On the Oka principle in a Banach space II, Math. Ann, Volume 326 (2003), pp. 443-458 | MR | Zbl
[P6] Cohomological characterization of pseudoconvexity in a Banach space, Math. Z, Volume 245 (2003), pp. 371-386 | MR | Zbl
Cited by Sources: