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THE GENERAL DEFINITION OF THE COMPLEX

MONGE-AMPÈRE OPERATOR

by Urban CEGRELL

1. Introduction.

Denote by PSH(Q) the plurisubharmonic functions on SZ and by
PSH- (Q) the subclass of negative functions. A set Q c en is said to

be a hyperconvex domain if it is open, bounded, connected and if there
exists E PSH- (Q) such that Iz E Q;  -cl cc S2, Vc &#x3E; 0. Such

function is called an exhaustion function for Q. Throughout this paper, Q
will always denote a hyperconvex domain. In the first part of this paper,
we consider global approximation of negative plurisubharmonic functions
by decreasing sequences of negative plurisubharmonic functions that are
continuous on Q, equal to zero on 8Q and with bounded Monge-Ampère
mass. The elements of this class of functions serves as "test functions".

Theorem 2.1 below states that global approximation is possible in PSH-.
We use Theorem 2.1 to show that integration by parts is almost always
allowed (Corollary 3.4). In the second part of this paper, we discuss a
general definition of the complex Monge-Amp6re operator. This is done
by introducing a class. of plurisubharmonic functions which consists of
all functions that are locally equal to decreasing limits of test functions
described above. The Monge-Amp6re operator can be extended to S, and
this is the most general definition if we require the operator to be continuous
under decreasing limits (Theorem 4.5). In the remaining part of the paper,
we study the Monge-Amp6re operator using this general definition.

Keywords: The complex Monge-Amp6re operator - Plurisubharmonic function.
Math. classification: 32U15 - 32W20.
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2. Approximation by continuous
plurisubharmonic functions.

In this section, we prove an approximation theorem for negative
plurisubharmonic functions, used throughout the paper.

THEOREM 2.1. - Suppose u E PSH- (Q). Then there is a decreas-
ing sequence of functions uj E PSH(Q) n C(f2) with 0, Vj E N,

Proof. Denote by hE the relative extremal function for E C C Q.
See [17]. Then supp(ddchE)n CC Q and if E = B is a ball, it follows

from a theorem by Walsh [18] that hB is continuous on f2. Thus, there
is a continuous exhaustion function v for Q with supp(ddcv)n CC Q, in
particular j See [5] and [14] for details.

For each j E N, choose a decreasing sequence such that

Denote by the usual regularization of u, defined on Orj where

Define on and mv otherwise on Q.

is plurisubharmonic on Q, continuous on Q and equal to
zero on dS L.

Also, since, Uj is the upper envelope of continuous functions, uj is

lower semicontinuous. We claim that uj is upper semicontinuous. We have
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since + -1) is decreasing in k. Finally, since

it follows that each uj is upper semicontinuous. It is a consequence of Stokes
theorem that

Remark. - Note that the uj:s, used in the proof above have com-
pactly supported Monge-Amp6re measures.

Remark. - There is always an exhaustion function in so n c, (Q)
Cf. [10]. For the definition of go see next section.

Remark. - In the case when Q is a so called B-regular domain,
arbitrary continuous boundary data has been studied in [19].

3. Integration by parts.

In this section, we study "integration by parts" which is an essential
tool in this paper.

We first recall the definition of the class So, introduced in [7];
£o(Q) is the convex cone of bounded plurisubharmonic functions cp with

LEMMA 3.1. -

Proof. Choose and let X E be given. Choose
m so large that

and define

. - 

,, . v I I , , ,

where M is so large that Mw  a - b on the support of x. Then cpl E Eo and
This proves the lemma since X = cpl - ~2-

THEOREM 3.2. - Suppose i
0, V~ E an, and T a positive and closed current of bidegree (



162

ddcu A T is a vvell-defined positive measure on Q. Furthermore, if

then ddcv A T is also a well-defined positive measure on Q and

The following lemma is well-known, cf. [13].

LEMMA 3.3. - If u E T a positive and closed current
of bidegree (n-l,n-1) and if u E K) where K is a compact subset

then ddlu A T is a well-defined positive measure on Q.

Proof. Note first that if x E then,

is a Radon measure with mass zero.

Therefore, f wdd’X A T is a positive number when

for every Q’ CC Q any strictly pseudoconvex domain containing K. In
particular, the conclusion of Lemma 3.3 holds true if I~ is empty. Choose

u~ , u~ E PSH n C°° in a neighborhood of Q’ :

and

So since lim f u~ dd~x A T exists, so does , Therefore,
dd’u A T is a well-defined positive measure on SZ. 0

Proof of Theorem 3.2. - Suppose i
on aSZ and that
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Then, by Theorem 3.3 in [12]

, J ’J ,

so if we denote by Xé the characteristic function of -El, we have that
(u + decreases to u when e decreases to zero.

Hence,
r r

and in the same way, using that A T we find that

OJ’ ,}" 

To complete the proof of Theorem 3.2, we use Theorem 2.1 and choose

Now, since

we have by dominated convergence that
r

- - i

Then, by Lemma 3.3 and what we have proved so far,
I I

so since u is upper semicontinuous we get

which proves Theorem 3.2.

COROLLARY 3.4. - Suppose

Vfl E 8Q and that T is a positive closed current of bidegree (1,1). If
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Remark. - See also [6], Theorem 5.7.

Remark. - In Section 4, we will extend the result of Corollary 3.4.

4. Definition of the complex Monge-Amp6re operator.

Using decreasing sequences of C°° - smooth plurisubharmonic func-
tions, it is known from [2] how to define when u is plurisubharmonic
and locally bounded which is a special case of plurisubharmonic functions
satisfying a certain growth condition studied in [1]. In these cases, as well
as in the class studied in [7], the comparison principle is valid.

Leaving this principle behind, (ddcu)n is well-defined for u bounded
near the boundary of its domain of definition, [13] and [16].

We are now going to consider a definition which covers all these cases.

DEFINITION 4.1. - Assume u E PSH-(n). We say that u E £(0.)
if to every there is a neighborhood w of zo in Q and a decreasing
sequence hj E Eo(Q) such that hj ~, u on wand supj  +oo.

Remark. - Since Eo (Q) is a convex cone, so is ~. See Section 2 in [7].

THEOREM 4.2. - Suppose
decreases to uP, j - +oo, then is weak*-

convergent and the limit measure does not depend on the particular
sequences .7 

Proof. - Suppose first that supj Then, for h E
is a decreasing sequence by Corollary 3.4

and since

exists for all

By Lemma 3.1. is weak*-convergent.
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If vf is another sequence decreasing to uP, we get, again by Corol-
lary 3.4,

Therefore, exists and is minorized

But this is a symmetric situation so we conclude that the limits are equal.

To complete the proof it remains to remove the restriction

Let K be a given compact subset of Q, cover K with finitely many Wq,
q = 1,..., N as in the definition (

be the corresponding hP:s and put
Then

Thus, if we defines 1
near K.

DEFINITION 4.3. - For uP E ~, 1 ~ p  n, we define ddcul Âddcu2 Â
... A to be the limit measure obtained in Theorem 4.2.

DEFINITION 4.4. - Consider a clasps) J such

(1) If u E K, v E PSH - (Q) then max(u, v) E K.

is uTeak*-convergent.
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Remark. - We will now see that 9 is the largest class for which (1)
and (2) holds true. Thus, we may say that .6 is optimal in this sense.

THEOREM 4.5. - The class E has property 1. and 2. of Defini-

tion 4.4. Conversely, if /C meets the requirements of Definition 4.4, then

Proof. - Suppose u E ~. Then (1) holds true by Theorem 3.2. To
prove (2), suppose ~

convergent by Theorem 4.2. Here, (mj) is any sequence, decreasing to -oo.
Hence is weak*-convergent and therefore (2) follows.

Conversely, suppose u E open and relatively compact in Q. By
Theorem 2.1, we can find ,

Define

Then ~ on w, hj decreases
on Q, and hj # u everywhere on Q.

Now, u E /C and so is . Therefore, by (2),
(ddChj)n is weak*-convergent and since supp(ddchj)n C (i) CC Q it follows
that supj  +oo and we have proved that u E E. 0

DEFINITION 4.6. - We denote the subclass of functions u

in £(Q) such that there exists a decreasing sequence uj E such that

Uj B u on Q and sup

Remark. - It follows from Corollary 3.4 and Theorem 4.2 that
integration by parts is allowed in .~’.

Remark. - It follows from the proof of Theorem 4.5 that every
u E £(0) is locally in 0(Q); to every u E and every w, open and

relatively compact in Q, there is a Uw E 0(Q) with u in w.
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5. The class 0.

In this section we to study 0 and prove some inequalities, a general-
ized comparison principle and a decomposition of (ddcu)n,u 

PROPOSITION 5.1. - Suppose uP E 0(Q), 1  p  n and h E

Proof. Since Q is open, and since i

converges weak*

If h is in C then, by the proof of Theorem 4.2

Suppose now h E and that

is finite.

For each j, choose hj E C, decreasing to h, qj and sj such that

COROLLARY 5.2. - Suppose and
......

decreases to and
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then tends weak*

Proof. Since -h is lower semicontinuous so is -hx for all

The following lemma is proved in [4].

We are going to prove another type of inequality, where we do not
need to control the sup-norm; Theorem 5.5 and Corollary 5.6.

LEMMA 5.4. - Suppose
I and where’ ’_

Proof. - 1. We first prove the statement in the lemma when p=q=1.
I- I-
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2. Assuming the lemma is proved when p + q x m, we prove it for
p + q x m + 1. However, we first prove:

For

Therefore,

Using this, we have

and the lemma is proved.

THEOREM 5.5. - Suppose ’ and Then
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Proof. - Using the definition of .~’ and Proposition 5.1, we see that
it is enough to consider the case when ~c1, ... , un E £0. We can then use
Lemma 5.4:

so the theorem is true if u2 = ... = un = u.

Assume the theorem is true for ... = u,, = u and suppose

Then

The theorem is proved.

where i is the Lelong number of u at x.
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Proof. We first assume that u E 0(B) , x = 0. Note that

so, for 1 ~ r, using Theorem 5.5,

If we now let r tend to +oo, we get the desired conclusion. In the general
case, we replace log Izl by the pluricomplex Greenfunction with pole at x.

a

Remark. - It follows from Corollary 5.7 that if u E E, then 0 1
is discrete.

THEOREM 5.8. - Suppose E is a pluripolar set in Q. Then there is
such thatEC {h = 2013oo}.

Proof. Recall the definition of from [7]: u is in if

sup f(-uj)P(ddcuj)n is finite where uj is as in Definition 4.6. Choose a

sequence of relatively compact subsets 0j of SZ such that every point of E
is in all but finitely many 0j and f(ddch(Jj)n  1 where ho, denotes the
relative extremal plurisubharmonic function. By Lemma 3.9 in [7], there is
a subsequence OKj such that E ~1. By Corollary 5.6 we can select
a subsequence of this subsequence, denoted by hj, such that L hj E F.
Hence L hj E .~1 and obviously ,

EXAMPLE 5.9. - The function log not in £(B) where B is
the unit ball in (C2. The classical energy equals

-

Since the classical energy of log ] is locally unbounded, it follows from
the remark after Definition 4. 6 that log IZ21 is not an element of £ (B). Using
this idea, a computation, performed in [8], shows that - (- log IZ21)v is in
g(B) if and only if 0  v  1/2.
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LEMMA 5.10. - Suppose u c E. Then

Proof. - We can assume that u E .~’. Choose uj E Eo n c(O)
decreasing to 1 decreases to

simple calculation shows that

Now, tends weakly to and to prove the lemma, it is

enough to prove that tends weakly to

Since we can use Corollary 5.2 and find, for
, ,

every fixed p, 
-- 

J

Letting p tend to oo, we get the desired conclusion. 0

THEOREM 5.11. - Assume that J1- is a positive measure on Q. Then
there is E £o and a function 0 ~ f E such that

where v is carried by a pluripolar set.

F’urthermore, if I.L = (ddcu)n for a function u E F then v is carried by

Proof. - Using the Radon-Nikodym theorem, the first part follows
from Theorem 6.3 in [7]. By Lemma 5.10,

In particular, has no mass on pluripolar sets. So if
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we have that, equals zero so v is carried by ~ u = - oo ~ . 0

The following theorem, usually refered to as the comparison principle,
was proved in [3] and generalized to in [7].

THEOREM 5.12. - If i

DEFINITION 5.13. - We denote by the subclass of functions

p such that vanishes on all pluripolar sets.

LEMMA 5.14. - Assume that p is a positive measure on Q. If

p(Q)  +oo and if p vanishes on all pluripolar sets, then there exists a
uniquely determined function p E Fa such that p.

Proof. It follows from Theorem 5.11 that there is E So and
a function 0  f such that By [15] ( see
also [7]), there is a unique solution gj E £0 to (ddcgj)n = 
and it follows from Theorem 5.12 that gi is a decreasing sequence. We put
g = limj-+o gj and it follows from Lemma 5.3 that g is plurisubharmonic
and therefore We will now prove that g is uniquely determined; assume
cp E with = p, we will prove that cp = g.

Let sj be a sequence of natural numbers and Kj C C SZ a fundamental
sequence of compacts of Q with hKj continuous such that

which is possible by monotone convergence since has no mass on

pluripolar sets. Furthermore, using Proposition 5.1, we know that
A A

and write We have that

is independent
of s by Lemma 5.4 in [7]. This means that

so letting s 2013~ +0oo, we find, using Corollary 5.2,
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Combining these inequalities, we get

Then it follows from Theorem 5.12 that

where

Put it follows that vj tends
so it remains to prove that

Hence tj tends weakly to zero, j - +oo so wj tends weakly to ~p

which completes the proof of Lemma 5.14. 11

THEOREM 5.15. -

Proof. - Without loss of generality we can assume that v C 0. We
know that and

for some w i ) and where v is carried by a pluripolar
we can assume that o = w and f.

By Lemma 5.14, it is enough to show that for the unique solution g to
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(ddCg)n = f (dd~w)~ we have that v  g. Let K be any non-empty compact
subset of Q. We have already used that -hK + max(v/s, hK)  
so using Corollary 5.2 and Lemma 5.4 in [7], we find

Hence

has no mass on pluripolar sets (Which we
already know from Theorem 5.11 ) . Therefore, is the unique solution
in So to

then max(v, shK) by the comparison principle and

Lemma 5.14 gives that 9,,K decreases to g when s tends to +oo and K
increases to Q. Thus,

Remark. - It was shown in [3] that is continuous under

increasing sequences in L~ and it can be shown that (ddc )n is also

continuous under increasing sequences In [20] it was shown that (ddc )n
is continuous under sequences in P,S’H f1 L’ , converging in capacity and
in [9], this was generalized to sequences in ,~’.

6. The Dirichlet problem in ,~’.

The Dirichlet problem for (ddc )n on PSH fl L°° was studied in [2],
[11] and [15] and on ~*p in [7]. Here, we consider the Dirichlet problem 

LEMMA 6.1. - Suppose ip E £0, v E F where is carried by
a pluripolar set. Then there is a g E F with

Proof. By assumption and Theorem 5.11 we can assume that

tddw)n is carried by Iv = 2013oo}.
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Choose Choose an increasing
sequence of compact sets Kj C ~ v == -oo} such that

and then tj such that This is possible since Kj is

compact and

and since is open,

for sj large enough. But vt~ is decreasing so

Choose now such that 1 on

, To simplify notation, we write vj for 

Solve

Define

Then we define g by gi B g, j - +oo. By the comparison principle
we and we claim that

For

we have
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(3) On the open set I I we have for - j  inf V)

on this set and

by the comparison principle.

Integration by parts now gives that

Since

have proved that if we prove that

But this follows from Theorem 5.5 so the proof of the lemma is complete.
o

THEOREM 6.2. - Suppose J-t is a positive measure on Q witll finite
total mass. Then p = -f- v where 0 E £0, 0  f E and

v is carried by a pluripolar set. If there is a v E .~ with (dd’v)’ = v then
there is a g E F with (ddcg)n == M.

Proof. It follows from Lemma 5.14 and Lemma 6.1 that for each

j there is a gj with + v. It follows from

the proof of Lemma 6.1 that gj # gj+l. Since,
it follows that exists and is in .~’. This completes the proof of
the theorem. D

Remark. - The theorem above generalizes results in [20] and [21].



178

BIBLIOGRAPHY

[1] E. BEDFORD, Survey of pluripotential theory. Several complex variables, Proceed-
ings of the Mittag-Leffler Inst. 1987-88. Edited by John Erik Fornaess, Mathe-
matical Notes 38, Princeton University Press, (1994), 48-95.

[2] E. BEDFORD and B.A. TAYLOR, The Dirichlet problem for a complex Monge-
Ampère equation, Invent. Math., 37 (1976), 1-44.

[3] E. BEDFORD and B.A. TAYLOR, A new capacity for plurisubharmonic functions,
Acta Math., 149 (1982), 1-40.

[4] Z. BLOCKI, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad.
Sci. Math., 41 (1993), 151-157.

[5] Z. BLOCKI, The complex Monge-Ampère operator in hyperconvex domains, Annali
della Scuola Normale Superiore di Pisa 4, 23 (1996), 721-747.

[6] M. CARLEHED, Potentials in pluripotential theory, Ann. de la Fac. Sci. de Toulouse,
VII:3 (1999), 439-469.

[7] U. CEGRELL, Pluricomplex energy, Acta Mathematica, 180:2 (1998), 187-217.

[8] U. CEGRELL, Explicit calculation of a Monge-Ampère measure, Actes des rencon-
tres d’analyse complexe, 25-28 Mars 1999. Edited by Gilles Raby and Frédéric
Symesak. Atlantique. Université de Poitiers, 2000.

[9] U. CEGRELL, Convergence in capacity, Isaac Newton Institute for Mathematical
Sciences, Preprint Series NI01046-NPD, Cambridge, 2001.

[10] U. CEGRELL, Exhaustion functions for hyperconvex domains, Research reports,
N° 10, 2001. Mid Sweden University.

[11] U. CEGRELL and S. KOLODZIEJ, The Dirichlet problem for the complex Monge-
Ampère operator: Perron classes and rotation invariant measures, Michigan.
Math. J., 41 (1994), 563-569.

[12] D. COMAN, Integration by parts for currents and applications to the relative
capacity and Lelong numbers, Mathematica, tome 39(62) (1997), N° 1, 45-57.

[13] J.-P. DEMAILLY, Mesures de Monge-Ampère et mesures pluriharmoniques, Math.
Z., 194 (1987), 519-564.

[14] N. KERZMAN and J.-P. ROSAY, Fonctions plurisousharmoniques d’exhaustion
bornées et domaines taut, Math. Ann., 257 (1981), 171-184.

[15] S. KOLODZIEJ, The complex Monge-Ampère equation, Acta Mathematica, 180
(1998), 69-117.

[16] N. SIBONY, Quelques problèmes de prolongement de courants en analyse complexe,
Duke Math. J., 52 (1985), 157-197.

[17] J. SICIAK, Extremal plurisubharmonic functions and capacities in Cn, Sophia
Kokyuroko in Mathematics, 1982.

[18] J.B. WALSH, Continuity of envelopes of plurisubharmonic functions, J. Math.

Mech., 18 (1968), 143-148.

[19] F. WIKSTRÖM, Jensen measures and boundary values of plurisubharmonic func-
tions, Ark. Mat., 39 (2001), 181-200.



179

[20] Y. XING, Complex Monge-Ampère equations with a countable number of singular
points, Indiana Univ. Math. J., 48 (1999), 749-765.

[21] A. ZERIAHI, Pluricomplex Green functions and the Dirichlet problem for the
Complex Monge-Ampère operator, Michigan Math. J., 44 (1997), 579-596.

Manuscrit requ le 2 avril 2003,
accepté le 25 juin 2003.

Urban CEGRELL,
Umea University
Department of Mathematics
S-901 87 Umea (Sweden)
and

TFM
Mid Sweden University
S-851 70 Sundsvall (Sweden).
Urban.Cegrell~math.umu.se


