Orbits of families of vector fields on subcartesian spaces
Annales de l'Institut Fourier, Volume 53 (2003) no. 7, pp. 2257-2296.

Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified spaces, Poisson spaces, and almost complex spaces are discussed as examples.

Nous démontrons que les orbites d’un ensemble complet de champs de vecteurs sur des espaces sous-cartésiens sont des variétés différentielles. Ce résultat permet de décrire la structure de l’espace de phase réduite d’un système hamiltonien à l’aide de l’algèbre de Poisson réduite. De plus, nous pouvons donner une description globale des structures géométriques de classe C sur une famille de variétés formant un feuilletage singulier d’un espace sous-cartésien, en fonction d’objets définis par l’ensemble des champs de vecteurs correspondants.

DOI: 10.5802/aif.2006
Classification: 58A40, 70H33, 32C15
Keywords: almost complex structure, differential spoace, Kähler space, Poisson reduction, singular reduction, stratified space
Mot clés : structure presque complexe, espace différentiel, espace kählérien, réduction de Poisson, réduction singulière, espace stratifié
Śniatycki, Jedrzej 1

1 University of Calgary, Department of Mathematics and Statistics, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)
@article{AIF_2003__53_7_2257_0,
     author = {\'Sniatycki, Jedrzej},
     title = {Orbits of families of vector fields on subcartesian spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {2257--2296},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {7},
     year = {2003},
     doi = {10.5802/aif.2006},
     zbl = {1048.53060},
     mrnumber = {2044173},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2006/}
}
TY  - JOUR
AU  - Śniatycki, Jedrzej
TI  - Orbits of families of vector fields on subcartesian spaces
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 2257
EP  - 2296
VL  - 53
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2006/
DO  - 10.5802/aif.2006
LA  - en
ID  - AIF_2003__53_7_2257_0
ER  - 
%0 Journal Article
%A Śniatycki, Jedrzej
%T Orbits of families of vector fields on subcartesian spaces
%J Annales de l'Institut Fourier
%D 2003
%P 2257-2296
%V 53
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2006/
%R 10.5802/aif.2006
%G en
%F AIF_2003__53_7_2257_0
Śniatycki, Jedrzej. Orbits of families of vector fields on subcartesian spaces. Annales de l'Institut Fourier, Volume 53 (2003) no. 7, pp. 2257-2296. doi : 10.5802/aif.2006. https://aif.centre-mersenne.org/articles/10.5802/aif.2006/

[1] N. Aronszajn Subcartesian and subriemannian spaces, Notices Amer. Math. Soc, Volume 14 (1967), pp. 111

[2] N. Aronszajn; P. Szeptycki The theory of Bessel potentials. IV., Ann. Inst. Fourier (Grenoble), Volume 25 (1975) no. 3/4, pp. 27-69 | DOI | Numdam | MR | Zbl

[3] N. Aronszajn; P. Szeptycki Subcartesian spaces, J. Differential Geom, Volume 15 (1980), pp. 393-416 | MR | Zbl

[4] R. Cushman; L. Bates Global aspects of classical integrable systems, Birkhäuser, Basel, 1997 | MR | Zbl

[5] L. Bates; E. Lerman Proper group actions and symplectic stratified spaces, Pacific J. Math, Volume 181 (1997), pp. 201-229 | DOI | MR | Zbl

[6] E. Bierstone Lifting isotopies from orbit spaces, Topology, Volume 14 (1975), pp. 245-272 | DOI | MR | Zbl

[7] E. Bierstone The Structure of orbit spaces and the singularities of equivariant mappings (Monografias de Matemática), Volume vol. 35 (1980), pp. Rio de Janeiro | Zbl

[8] R. Cushman; J. {#x015A;}niatycki Differential structure of orbit spaces, Canad. J. Math, Volume 53 (2001), pp. 715-755 | DOI | MR | Zbl

[9] J.J. Duistermaat; J.A.C. Kolk Lie groups, Springer Verlag, New York, 1999 | MR | Zbl

[10] M. Goresky; R. MacPherson Stratified Morse theory, Springer Verlag, New York, 1988 | MR | Zbl

[11] J. Huebschmann Kähler spaces, nilpotent orbits, and singular reduction (e-print, Mathematics ArXiv DG/0104213)

[12] P. Libermann; C.-M. Marle Symplectic geometry and analytical mechanics, D. Reidel Publishing Company, Dordrecht, 1987 | MR | Zbl

[13] C.D. Marshall Calculus on subcartesian spaces, J. Differential Geom, Volume 10 (1975), pp. 551-573 | MR | Zbl

[14] C.D. Marshall The de Rham cohomology on subcartesian spaces, J. Differential Geom, Volume 10 (1975), pp. 575-588 | MR | Zbl

[15] A. Newlander; L. Nirenberg Complex analytic coordinates in almost complex manifolds, Ann. of Math., Volume 65 (1957), pp. 391-404 | DOI | MR | Zbl

[16] M.J. Pflaum Analytic and geometric study of study of stratified spaces, Lecture Notes in Mathematics, vol. 1768, Springer Verlag, Berlin, 2001 | MR | Zbl

[17] G.W. Schwarz Smooth functions invariant under the action of a compact Lie group, Topology, Volume 14 (1975), pp. 63-68 | DOI | MR | Zbl

[18] R. Sikorski Abstract covariant derivative, Colloq. Math, Volume 18 (1967), pp. 251-272 | MR | Zbl

[19] R. Sikorski Differential modules, Colloq. Math, Volume 24 (1971), pp. 45-79 | MR | Zbl

[20] R. Sikorski Wstȩp do Geometrii Ró\. zniczkowej, vol. 42, PWN, Warszawa, 1972 | MR | Zbl

[21] R. Sjamaar; E. Lerman Stratified symplectic spaces and reduction, Ann. Math, Volume 134 (1991), pp. 375-422 | DOI | MR | Zbl

[22] J. {#x015A;}niatycki Almost Poisson structures and nonholonomic singular reduction, Rep. Math. Phys, Volume 48 (2001), pp. 235-248 | DOI | Zbl

[23] J. {#x015A;}niatycki Integral curves of derivations on locally semi-algebraic differential spaces, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24--27 (2002), pp. 825-831 | Zbl

[24] K. Spallek Differenzierbare Räume, Math. Ann., Volume 180 (1969), pp. 269-296 | DOI | MR | Zbl

[25] K. Spallek Differential forms on differentiable spaces, Rend. Mat. (2), Volume 6 (1971), pp. 237-258 | MR | Zbl

[26] P. Stefan Acessible sets, orbits and foliations with singularities, Proc. London Math. Soc., Volume 29 (1974), pp. 699-713 | DOI | MR | Zbl

[27] H. J. Sussmann Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc, Volume 180 (1973), pp. 171-188 | DOI | MR | Zbl

Cited by Sources: