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ORBITS OF FAMILIES OF VECTOR FIELDS

ON SUBCARTESIAN SPACES
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1. Introduction.

This work is motivated by the program of Poisson reduction of Hamil-
tonian systems. Under the assumption that the action of the symmetry
group G on the phase space P of the system is proper, the orbit space
,S’ = P/G is stratified by orbit type ([9]). For a Hamiltonian system, each
stratum of ,S’ is singularly foliated by symplectic leaves ([5], [21]). The orbit
space ,S has a differential structure given by push-forwards to ,5’ of
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reduction - Singular reduction - Stratified space.
Math. classification: 58A40 - 70H33 - 32C15.
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G-invariant smooth functions on P ([17], [8]). Moreover, has the

structure of a Poisson algebra, usually called the reduced Poisson algebra.
Following the approach initiated by Sjamaar and Lerman ([21]), we want
to describe strata of the stratification of ,S’ as well as leaves of the singular
foliation directly in terms of the reduced Poisson algebra 

The essential property of a smooth stratified space needed here is the
fact that it is a smooth subcartesian space. The notion of a subcartesian

space was introduced by Aronszajn ( ~1~ ), and subsequently developed by
Aronszajn and Szeptycki ([2], [3]), and by Marshall ([13], [14]). Related
notions were independently introduced and studied by Spallek ([24], [25]).

A smooth subcartesian space is a diffferential space in the sense of

Sikorski ([18], [19], [20]), that is locally diffeomorphic to a subset of a
Cartesian space R’. Hence, we can use the differential space approach and
study properties of a subcartesian space in terms of its ring of globally
defined smooth functions.

In this paper, we generalize to smooth subcartesian spaces the theo-
rem of Sussmann on orbits of families of vector fields on manifolds ([27]),
and investigate its applications. In order to do this, we must first extend
to subcartesian spaces the results on the relationship between derivations
and local one-parameter local groups of diffeomorphisms of locally semi-
algebraic differential spaces obtained in [23].

Let ,5’ be a smooth subcartesian space, and X : ~ C°° (,S’) :
h H X . h be a derivation of A curve c : I - S, where I is an
interval in R, is an integral curve of X if

for all

We show that, for every derivation X of C°° (,S’) and every r e S, there
exists a unique maximal integral curve of X passing through x.

We define a vector field on a smooth subcartesian space ,S’ to be

derivation that generates a local one-parameter group of local diffeomor-

phisms of S. Let .~ be a family of vector fields on S. An orbit of .~’ through
a point .r G 6’ is the maximal set of points in ,S’ which can be joined to x
by piecewise smooth integral curves of vector fields in ,~’. In other words,

belongs to the orbit of .~’ through x if there exist a positive integer
m, vector fields X~,..., X~ and (tl , ... , tm) E JRm such that

We introduce the notion of a locally complete family of vector fields.

A family ,~’ is locally complete if, for every X, Y E 0, t E R, and
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x E S’, for which the push-forward is defined, there exist an open
neighbourhood U of x and a vector field Z E .F such that the restriction of

of U coincides with the restriction of Z to U. In particular, a family
consisting of a single vector field X on ,S’ is locally complete because, for
every t E R, coincides with the restriction of X to the domain of

p£X. Thus, the notion of local completeness of a family of vector fields is
unrelated to completeness of vector fields constituting the family.

MAIN THEOREM. - Each orbit of a locally complete family of vector
fields on a smooth subcartesian space S is a smooth manifold, and its
inclusion into S is smooth.

We refer to the partition of ,S’ by orbits of ,~’ as the singular foliation
of ,S’ defined by ,~’, and to orbits of .F as leaves of the singular foliation. In
the case when S is a smooth manifold, and .F is a locally complete family
of smooth vector fields on S, orbits of .~’ give rise to a singular foliation of
,S’ in the sense of Stefan ([26]). Stefan’s definition of a singular foliation of
a smooth manifold contains a condition of local triviality, similar to a local
triviality of a stratification (see Section 6). Orbits of a locally complete
family of vector fields on a subcartesian space need not satisfy an obvious
extension of Stefan’s condition.

We show that the family X(S) of all vector fields on a subcartesian
space ,S’ is locally complete. The singular foliation of ,5’ defined by is

minimal in the sense that, for every family .~’ of vector fields on S, orbits
of .~ are contained in orbits of X(S). In particular, the restriction of 0 to
each orbit M of X (S) is a family of vector fields on M, and orbits of
.~’ contained in M are orbits 

We show that smooth stratified spaces are subcartesian. All stratified

spaces considered here are assumed to be smooth. A stratified space ,S’ is

locally trivial if it is locally diffeomorphic to the product of a stratified space
and a cone ( ~16~ ) . We introduce the notion of a strongly stratified vector
field on a stratified space, and prove that the family of all strongly stratified
vector fields on a locally trivial stratified space ,S’ is locally complete and
that its orbits are strata of S. Hence, each stratum of ,S’ is contained in an
orbit of the family X(S) of all vector fields on S. Moreover, we show that
if ,5’ is a locally trivial stratified space then orbits of the family of

all vector fields on ,S’ also give rise to a stratification of S. If the original
stratification of ,5’ is minimal, then it coincides with the stratification by
orbits of These results on stratified spaces are applied to describe
singular Poisson reduction of Hamiltonian systems.
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We discuss also subcartesian Poisson spaces and almost complex
spaces. A combination of these two structures gives rise to a gener-
alization to subcartesian spaces of stratified Kahler spaces studied by
Huebschmann [11].

2. Differential spaces.

We begin with a review of elements of the theory of differential spaces
([20]). Results stated here will be used in our study of vector fields on
subcartesian spaces.

A differential structure on a topological space R is a family of

functions C~(R) satisfying the following conditions:

2.1. The family

is a sub-basis for the topology of R.

2.2. If fl, ... , fn E C°°(R) and F E then F(fI,...,fn) E
C~ (R) .

2.3. If f : R - R is such that, for every x E R , there exist an open
neighbourhood Ux of x and a function fx E C~(R) satisfying

then f E CCXJ(R). Here the vertical bar ] denotes the restriction.

A differential space is a topological space endowed with a differential
structure. Clearly, smooth manifolds are differential spaces.

LEMMA 1. - For every open subset U of a differential space R and

every x E U, there exists f E C°° (R) satisfying f I V = 1 for some

neighbourhood V of x contained in U, and f W = 0 for some open subset
W of R such that U U W = R.

Proof follows ref. [20]. - Let U be open in R and x E U. It follows

from condition 2.1 that there exist a map cp = ( f 1, ... , fn) : R ---+ R’, with
E CCXJ(R), and an open set U C such that x E C U.

Since cp(x) E U c there exists F E such that F ~ I V = 1 for
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some neigbourhood V of in RI contained in U, and F W = 0 for some
open set W in Rn such that UUW = Since cp is continuous, V = (V )
and W = are open in V. Moreover, C U and = R~

imply that U U W = R. By condition 2.2, f - E C°° (R) .
Furthermore, f I V = I V = F ~ I W(V) = F ~ ] V = 1. Similarly,
f W = F I W = 0, which completes the proof. 0

A continuous map cp : S --+ R between differential spaces Sand R is

smooth if cp* f = fo p E C°° (S) for every f E C’ (R). A homeomorphism
cp : S - R is called a diffeomorphism if p and W-1 are smooth.

If R is a differential space with differential structure Coo (R) and ,S’ is

a subset of R, then we can define a differential structure C°° (,S’) on ,S’ as

follows. A function f : S - R is in C" (S) if and only if, for every xES,
there is an open neighborhood U of x in R and a function fx E C°° (R) such
that fl(S n U) - n U). The differential structure C"(S) described
above is the smallest differential structure on ,S’ such that the inclusion map
i, : S - R is smooth. We shall refer to ,5’ with the differential structure

described above as a differential subspace of R. If ,S’ is a closed

subset of R, then the differential structure described above consists

of restrictions to ,S’ of functions in Coo (R).
A differential space R is said to be locally diffeomorphic to a dif-

ferential space S if, for every x E R, there exists a neighbourhood U of x
diffeomorphic to an open subset V of S. More precisely, we require that the
differential subspace U of R be diffeomorphic to the differential subspace
V of S. A differential space R is a smooth manifold of dimension n if and

only if it is locally diffeomorphic to 

Let R be a differential space with a differential structure A

derivation on C°° (R) is a linear map X : C°° (R) -~ Coo (R) : f ~--~ X. f
satisfying Leibniz’ rule

We denote the space of derivations of C°° (R) by It has the

structure of a Lie algebra with the Lie bracket [Xi , X2] defined by

for every Xl, X2 E Der C’ (R) and f E CIO (R).

LEMMA 2. - If f E is a constant function, then X. f = 0
for all X E Der C°° (R) .
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Proof. If f E C°° (R) is identically zero, then f 2 = f - 0,
and Leibniz’ rule implies that X - f = X - f 2 - 2 f (X - f ) - 0 for every
X E Der C°° (R) . Similarly, if f is a non-zero constant function, that is

f (x) = c ~ 0 for all x E R, then f2 = c f , and the linearity of derivations
implies that X. f2 = X - (c f ) = c(X - f ) . On the other hand, Leibniz’ rule
implies that X. ~ - 2f (X. f ) = 2c(X. f). Hence c(X. f) = 2c(X. f). Since
c ~ 0, it follows that X. f = 0. D

LEMMA 3. - If f E C°° (R) vanishes identically in an open set
U C R, then (X. f) U = 0 for all X E Der C" (R) .

Proof. If f E C°° (R) vanishes identically in an open set U C R,
then for each x E U, there exists by Lemma 1 a function h E C°° (R) such
that h(x) - 1 and h f - 0. Therefore, 0 = X - (h f ) - h(X.f)+f(X-h)
for every smooth derivation X. Evaluating this identity at x, we get
(X. f)(x) = 0 because f (x) = 0. Hence, (X. f) U = 0. D

LEMMA 4. - Let U be open in R, and Xu a smooth derivation

of C°° (U). For each x E U, there exist an open neighbourhood V of x
contained in U, and X E Der C°° (R) such that

for all

Proof. Let U be an open neighbourhood of xo in R , and Xu a
smooth derivation of C°°(U). There exist open sets V and W in R such
that xo E V C V C W C W C U. Let f E C°° (R) be such that f ~ V = 1
and f 0. Then (f is a derivation of C°°(U) which vanishes
on UBW. Hence, it extends to a smooth derivation X of C’(R) such that,
for every h E C~(R), (X. h) ( V = (Xu. (h U) ) ~ V . D

A local diffeomorphism p of R to itself is a diffeomorphism p : U ---+ V,
where U and V are open differential subspaces of R. For each f E 
the restriction of f to V is in C’ (V), and = is in If ~p* f
coincides with the restriction of f to U, we say that f is W-invariant, and
write cp* f = f. For each X E Der( COCJ (R)), the restriction of X to U is
in and the push-forward cp*X of X by p is a derivation of

COCJ (V) such that
for all

Since all functions in CCXJ (V) locally coincide with restrictions to V of func-
tions in CI(R), equation (2) determines cp*X uniquely. If coincides
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with the restriction of X to V, we say that X is p-invariant and write
~p * X = X.

3. Subcartesian spaces.

Subcartesian spaces were introduced by Aronszajn ( ~1~ ), and devel-
oped in [3] and [13]. They are Hausdorff differential spaces locally diffeo-
morphic to a differential subspace of a Cartesian space. In other words,
a subcartesian space is a Hausdorff differential space ,S’ that can be cov-

ered by open sets, each of which is diffeomorphic to a differential subspace
of a Cartesian space. In the remainder of this paper, we restrict our con-

siderations to differential spaces that are Hausdorff, second countable and
paracompact.

In this section, we describe properties of differential subspaces of R’
which extend to subcartesian spaces. In the remainder of this section, R
denotes a differential subspace of R’~, considered as a differential space
endowed with the standard differential structure C~(R~). In other words,
a function f : R - R is in C°° (R) if, for every x E R, there exist an open
set and fu E such that U n R.

LEMMA 5. - Let W be an open subset of R C R~B and fw E
C°° (W ) . F’or every x E W there exist a function f E C°° (R) and a
neighbourhood V of x contained in W such that f I V = fw I V.

Proof. The proof is an immediate consequence of the definition of
a differential subspace. 0

For every differential space S, each X E Der C(X) (,S’) and every x E ~S’,
we denote by X (x) : C°° (S) - R the composition of the derivation X with
the evaluation at x. In other words, X (x). f = (X. f ) (x) for all f E C(X) (S).
We use the notation

and refer to elements of Derx C°° (,S) as derivations of C°° (,S’) at x.

LEMMA 6. - Let R be a differential subspace of Rn and X a
derivation of C’ (R). For every x E R, there is E Derx 
such that

for all
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Proof. Let X (x) : C’ (R’) --+ R be given by equation (4). It

is a linear map satisfying Leibniz’ rule X (x) ~ ( f h) = f (x) (X (x) ~ h) +
h(x) (X_ (x) ~ f ) . Hence, X (x) E and it extends to a smooth vector
field X on R’ so that X (x) is the value of X at x E_ Jaen. Since vector fields
on RI are derivations of COO (Rn), it follows that j( (x) E Derx 0

PROPOSITION 1. - Let R be a differential subspace of RI and
X a derivation of C°° (R) . For every E C°° (R) and every
F E 

Proof. Let C°° (R) and x E R. We denote by
pi, ... , pn : JRn -~ R the coordinate functions on R’~. There exist a

neighbourhood U of x E R’ and functions Fi , ... , Fm E C’(R’) such
that f R = Fi(PI,... pn) U n R. Hence, for every F E 

By Lemma 4, there exists X (x) E Derx C°° (R’) such that equation (4) is
satisfied. Hence,

This holds for every x e R, which implies equation (5). D
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PROPOSITION 2. - Let R be a differential subspace of For

every X E Der C°°_(R) and each x E R, there exists an open neighbourhood
U of x and X E Der C°° (U) such that

for all

Proof. Let hl, .. - , hn be the restrictions to R of Cartesian co-
ordinates pi, ... , pn on R~. For every X E the functions

~C’~i,...,~-~ are in Hence, for every x E R, there exist an
open neighbourhood U of x in R~ and functions f 1, ... , f n E such

that 

Let Then and

Consider the vector field

on U. Since U is open in R’, X is a derivation of Moreover,

for all f E 0

It follows from Proposition 2 that every derivation X of C°° (R) can be
locally extended to a derivation of C°° (Rn). Clearly, this extension need not
be unique. Moreover, If X is a smooth vector field on and f E 
then the restriction of X ~ f to R need not be determined by the restriction
of f to R. Hence, not every vector field on R n restricts to a derivation of

LEMMA 7. - Let U be an open subset of R C R~, and Xu a smooth
derivation of COO(U). For each x E U, there exist an open neighbourhood

contained in U, and X E Der C°° (R) such that
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Proof. By Lemma 1, there exist open sets V and W in R, such
that x E V C and f satisfying f ~ V - 1 and
f W = 0. For every h E C°° (R), let X be given by

In have

because f W = 0. Hence, X is well defined. Moreover, X E Der C°° (R),
and f ~ V = 1 implies (X ~ h) ~ V = I U)) 

LEMMA 8. - Let R be a differential subspace If U and V

are open subsets of R’ and p : : U - V is a diffeomorphism such that

cp(U n R) = V n R, then the restriction of cp to U n R is a diffeomorphism
ofUnR ontoV n R.

Proof. - By assumption, R is a topological subspace of R’~, the
mapping p : ~7 ~ V is a homeomorphism, and n R) = V n R. Hence,
for every open subset W of R’, n (V n R)) is open in U n R, and
cp(W n (U n R)) is open in V n R. Thus, cp induces a homeomorphism

Moreover, induces a diffeomorphism of open differential subspaces
U and V of R’. We want to show that f E C°°(Y n R) implies O*f E
C°° (U n R) . Given x E U n R, let y = O(x) E V n R. Since R is a differential
subspace of R’ and f E C~(V n R), there exist a neighbourhood W of
x E V and a function fw E C~(V) such that 
Moreover, is a neighbourhood of x in U, is in C°° (U), and

Thus, for every r E R, there exist a neighbourhood of x in U

and a function in C°° (U) such that O*f I (cp-1 (W ) n R) = W*fw I
(cp-1 (W ) n R). This implies that f E C°° (U n R).

It follows that 0 is smooth. In a similar manner we can prove that
is smooth. Hence, 0 is a diffeomorphism. D
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Let ,S’ be a subcartesian space. It can be covered by open sets, each of
which is diffeomorphic to a differential subspace R of R’~ . All the properties
of differential subspaces of R’ discussed in Lemmata 4 through 8 and
Propositions 1 and 2 are local. Hence they extend to subcartesian spaces.

4. Families of vector fields.

In this section, we discuss properties of vector fields on subcartesian

spaces.

In the category of smooth manifolds, translations along integral curves
of a smooth vector field give rise to local diffeomorphisms. In the category
of differential spaces, not all derivations generate local diffeomorphisms.
We reserve the term vector field for a derivation that generates a local

one-parameter group of local diffeomorphisms.

Let I be an interval in A smooth curve c : I -~ ,S’ on a differential

space ,S’ is an integral curve of X E if

for every f E C°° (,S’) and t E I. If 0 E I and c(0) = x, we refer to c as an
integral curve of X through x.

THEOREM 1. - Assume that S is a subcartesian space. For every
and every X E Der(COO(S)) there exists a unique maximal integral

curve c : I - S through x.

Proof outline (a detailed proof is given in [23]). - Since ,S’ is a

subcartesian space, given x E S’, there exists a neighbourhood V of x in S
diffeomorphic to a differential subspace R of R’~. In order to simplify the
notation, we use the diffeomorphism between R and V to identify them,
and write Y = R. By Proposition 2, there exists an extension of X to a
smooth vector field X on an open neighbourhood U of x in R’ given by
equation (6).

Given y E R C R’, consider an integral curve c : I - R n of X such
that ~(0) = y. Let I be the connected component of containing
0, and c : I -~ R the curve in R obtained by the restriction of c to I.

Then, c(0) = y. Moreover, for each t E I, and f E C°° (S’) there exist
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a neigbourhood U of a(t) in R n and a function F E C’ (R n) such that
Hence, by Proposition 2,

This implies that c : I -~ R is an integral curve of X through y. Since I is
a connected subset of R, it is an interval. Local uniqueness of c (up to an
extension of the domain) follows from the local uniqueness of solutions of
differential equations on 

The above argument gives existence and local uniqueness of integral
curves of derivations of C°° (,S’) . The usual technique of patching local
solutions, and the fact that the union of intervals with pairwise non-empty
intersection is an interval, lead to the global uniqueness of integral curves
of derivations on a subcartesian space S. 0

Let X be a derivation of C°° (,S’) . We denote by ’Pt(x), the point on
the maximal integral curve of X through x corresponding to the value t
of the parameter. Given x E R~, ’Pt (x) is defined for t in an interval Ix
containing zero, and x. If t, s and t + s are in Ix, s E and

t c Icps(x), then In the case when ,S’ is

a manifold, the map cpt is a diffeomorphism of a neighbourhood of x in S
onto a neighbourhood of in S. For a subcartesian space S, the map
cpt might fail to be a local diffeomorphism. We adopt the following

DEFINITION OF A VECTOR FIELD. - Let S be a subcartesian space.
A derivation X of C°° (,S’) is a vector field on S if, for every x E S, there
exists an open neighbourhood U of x in S, and E &#x3E; 0 such that, for every
t E (-E, E), the map pt is defined on U, and its restriction to U is a
diffeomorphism from U onto an open subset of S.

Example l. - Consider ,S’ = ~0, oo) C R with the structure of a
differential subspace of R. Let (X. f) = f’ (x) for every f E C°° ( ~0, oo))
and x E [0, or). Note that the derivative at x = 0 is is the right derivative;
it is uniquely defined by f (x) for x &#x3E; 0. For this X, the map cpt is given by
c,pt (x) = x + t whenever x and x + t are in [0, oo). In particular, for every
neighbourhood U of 0 in [0, oo) there exists 6 &#x3E; 0 such that [0, 6) C U.
Moreover, put maps [0, 6) onto [t, 6 + t) which is not a neighbourhood of
t = in [0, oo). Hence, the derivation X is not a vector field on

~0, oo). On the other hand, for every f E oo) such that f (0) = 0,
the derivation f X is a vector field, because 0 is a fixed point of f X.
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We say that a subcartesian space ,5’ is locally closed if every point of
,S’ has a neighbourhood diffeomorphic to the intersection of an open and a
closed subset of a Cartesian space. There is a simple criterion characterizing
vector fields on a locally closed subcartesian space; namely,

PROPOSITION 3. - Let S be a locally closed subcartesian space.
A derivation X of C°° (,S’) is a vector field on S if the domain of every
maximal integral curve of X is open in R.

Proof. Consider first the case when ,5’ is a relatively closed differ-
ential subspace of R’~. In other words, S = U n C , where U is open and
C is closed in By Proposition 2, we may assume that X on ,S’ extends

to a vector field X on U. We denote by 1§St the local one-parameter group
of local diffeomorphisms of U generated by X. By Theorem 1, for every
x E S’, there is a maximal interval h E R such that CPt (x) E S for
all t E Ix.

Given .K e 9 C U, there exist c &#x3E; 0 and a neighbourhood U’ of x in
U such that such that, for every t E (-c,c), the map (pt is defined on U’,
and its restriction to U’ is a diffeomorphism from U’ onto an open subset
of U. In view of Lemma 8, it suffices to show that there exist 6 E (0, e] and
a neighbourhood U" of x in U’ such that maps U" n C to ’Pt(U") n C
for all t E (2013J,~). Suppose that there are no U" and 6 satisfying this
condition. This means that, for every neighbourhood U" of x in U, and
every 6 E (0, c], there exist a point y E U" n C and s E (-6,6) such
that cps (~) ~ rl C. Since E for every t E (-c,c), it

follows that C. Hence, s is not in the domain Iy the maximal
integral curve of X through y. If s &#x3E; 0, let u be the infimum of the set

{t E [0, s] I C}. Then, E C for all t E [0, u). Since is

continuous in t and C is closed, it follows that pu(y) e C. Moreover, for
every v &#x3E; u , there exists t E (u, v) such that C. It implies that

[0, oo) n Iy = [0, u]. Hence, the domain Iy of the maximal integral curve of
X through y is not open in R, contrary to the assumption of the theorem.
Hence, the case s &#x3E; 0 is excluded. Similarly, we can show that the case
s  0 is inconsistent with the assumption that the domains of all maximal

integral curves of X are open.

We have shown that there exist 6 E (0, c] and a neighbourhood U" of
x in U’ such that cpt maps U" n C to ’Pt(U") n C for all t E (-6, 6) . This
implies that = ’Pt (z) is defined for every t E (- 6, 6), and each z E U".
By Lemma 8, it follows that, cpt restricted toull f1 ,S is a diffeomorphism
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onto CPt(U") n S. Since this holds for every we conclude that cpt is

a local one-parameter group of local diffeomorphisms of S. Hence, X is a
vector field on S.

Consider now a derivation X on a locally closed subcartesian space
,S’ such that the domains of all maximal integral curves of X are open. For
each we denote by pt (r) the point on the maximal integral curve of
X through x corresponding to the value t of the parameter. The function
t ~ Wt(x) is defined on an interval Ix in R, which is open by hypothesis.

For every x E ,S’ there exist a neighbourhood W of x in ,S and a

diffeomorphism X of W onto a locally closed subspace U n C of By the
first part of the proof, the push-forward of X by X is a vector field on UnC.
Since x is a diffeomorphism, it follows that there exist a neighbourhood W’
of x in W C 6’ and &#x3E; 0 such that, for every t E (-E, E), the map Spt is

defined on W’, and its restriction to W’ is a diffeomorphism from W’ onto
an open subset of W C S. Hence, X is a vector field on S. 0

The following example shows that the assumption that S’ is locally
closed is essential in Proposition 2.

Example 2. - The set

is not locally closed. The vector field X = aal on JR2 restricts to a derivationXl
X of For every x = (X 1, X2) C S’, Qt(x) _ (xl + t, x2) for all

t E R. Its restriction to ,5’ induces given by + t, X2) for
and for t E IR

if x2 = 0. Hence, all integral curves of X have open domains. Nevertheless,
cpt fails to be a local one-parameter local group of diffeomorphisms of S.

Let ,~’ be a family of vector fields on a subcartesian space S. For
each X E T, we denote by pf the local one-parameter group of local
diffeomorphisms of ,S’ generated by X. We say that the family T is locally
complete if, for every X, Y C E R and x E ,5’, for which is

defined, there exist an open neighbourhood U of x and Z E ,~’ such that

For example, a family consisting of a single vector field X is locally
complete because X (x) at all points x E ,S’ for which is

defined.

THEOREM 2. - The family of all vector fields on a subcarte-

sian space S is locally complete.



2271

Proof. For X E let denote the local one-parameter
group of local diffeomorphisms of ,S’ generated by X. For a given t E R let
U be a neighbourhood of x E S’ such that pf maps U diffeomorphically
onto an open subset V of S. For each Y E is in Der(C" (V)) .
If pi denotes the local one-parameter group of diffeomorphisms of Y, then

for every f E C~(V) and x E V and s E Iy such that E U. Hence,
s ~ pf (cps (x)) is an integral curve of (p’ Y through (px (x). Since Y is a
vector field, for every XES, there exist an open neighbourhood W of x
in S, and E &#x3E; 0 such that, for every s E ( -~, ~) , the map Sps is defined

on W, and its restriction to W is a diffeomorphism from W onto an open
subset of S. We can choose W and E so that ~ps maps W into U for all
s E (-E, E). Since cpt maps W diffeomorphically onto V, it follows that

restricted to W maps W difeomorphically onto which

is open in V for all s E (-c,E). Hence is a vector field on V.

For every x E V, there exists an open neighbourhood W of x such that
W c V. Let f E CIO (V) be such that f (x) = 1 and f vanishes identically on

Then f cpt*Y is a vector field on V vanishing on VBW, and it extends
to a vector field Z on S. Hence, (cpt*Y) (x) - Z(x) and
Z E X(S).

The above argument is valid for every X and Y in Hence, X (S)
is a locally complete family of vector fields. 0

5. Orbits and integral manifolds.

In this section we prove that orbits of families of vector fields on a

subcartesian space ,S’ are manifolds. This is an extension of the results of

Sussmann ([27]), to the category of subcartesian spaces.
Let 17 be a family of vector fields on a subcartesian space S. For each

X E T we denote by cpt the local one-parameter group of diffeomorphisms
of ,S’ generated by X. The family .~’ gives rise to an equivalence relation
on ,S’ defined as follows: r - y if there exist vector fields X , ... , X n C .~
and ti , ... , tn E R such that
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In other words, r - y if there exists a piecewise smooth curve c in S, with
tangent vectors given by restrictions to c of vector fields in ,~’, which joins x
and y. The equivalence class of this relation containing x is called the orbit

through x. The aim of this section is to prove that orbits of locally
complete families of vector fields on a subcartesian space S, are manifolds
and give rise to a singular foliation of S. This is an extension of the results
of Sussmann ([27]), to the category of differential spaces.

Following Sussmann’s notation, we write ~ = (X’,..., X’), T =
(tl, ... , tm) and -

The expression for gT (r) is defined for all (T, x) in an open subset Q(g) of
x S. Let OT (ç) denote the set of all .r E 9 such that (T, x) E O( ç). In

other words, QT (g) is the set of all x for which gT (r) is defined. Moreover,
we denote by C Il~"2 the set of T E I1~"2 such that gT (r) is defined.

We now assume that ,S’ is a subset of For each x E ,S’ C R’ and

where ts : S - R’ is the inclusion map. If M is the orbit of .h’ through
x, considered as a subset of R’~, then it is the union of all the images of
all the mappings as m varies over the set N of natural numbers and ~
varies over We topologize M by the strongest topology T which makes
all the maps continuous. Since each - R’ is continuous,
it follows that the topology of M as a subspace of R’ is coarser than the
topology T. Hence, the inclusion of M into JRn is continuous with respect
to the topology T. In particular, M is Hausdorff. Since all the sets 
are connected it follows that M is connected. The proof that the topology
T of M defined above is independent of the choice of x E M is exactly the
same as in [27].

If ,S is a subcartesian space, then it can be covered by a family
of open subsets, each of which is diffeomorphic to a subset of

The argument given above can be repeated in each Ua leading to a
topology T~a in Ma = Ua f1 M. For a,,3 E A, the topologies T, and To are
the same when restricted to Ma n Me . We define the topology of M so
that, for each a E A, the induced topology in Ma is Ta .

Suppose now that .~ is a family of vector fields on S. For each x C 9,
let D:Fx be the linear span of = Suppose there
is a neighbourhood of x E S diffeomorphic to a subset of R’~. Then,

n.
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LEMMA 9. - For a locally complete of vector fields on a

subcartesian space ,S’, is constant on orbits 

Proof. Given XES, let k, and X 1, ... , xk be

such that ~X 1 (x), ... , X ~ (x) ~ is a basis in Since the family ~" is
locally complete, for every X E ~", and t E cpX X 1 (Spx (x)), ... ,

are in 
(~&#x3E; 

and are linearly independent because ~pt
is a local diffeomorphism. Hence, Using we

wt 
can show that Hence, for

every X E -F". Repeating this argument along
we conclude that dimDFx for every y on the orbit of F

though x. 0

In analogy with standard terminology, we shall use the term integral
manifold of Dz for a connected manifold M contained in S, such that its
inclusion into S is smooth and, for every x E M, = DFx.

THEOREM 3. - be a locally complete family of vector
fields on a subcartesian space S. Each orbit M with the topology
T introduced above, admits a unique manifold structure such that the
inclusion map tms : M --+ S is smooth. In terms of this manifold structure,
M is an integral manifold of 

Proof. Let M be an orbit of ,~’. Since is locally complete, for
each z E M, the dimension m = dim Dj,., is independent of z, and there
exist m vector fields in .~’ that are linearly independent in
an open neighbourhood V of z in S. Without loss of generality, we may
assume that V is a subset of R’~. By Proposition 2, the restrictions of
X 1, ... , to vector fields on V extend to vector fields ..., X "2 on a
neighbourhood U of z in R’~. Without loss of generality, we may assume
that they are linearly independent on U.

Given let be such that

X 1 (x), ... , form a basis of T = (tl , ... , tm) e Oç,x and

For each i = 1, ... , m,

Hence,
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In particular,

Since the vectors are linearly independent, it follows

that Tpç,x (0) : ]Rm ---+ is one to one. Hence, there exists an open
neighbourhood Wç,x of 0 in such that the restriction of 

to W~,x is an immersion of W~,x into U C Therefore, = (Wç,x)
is an immersed submanifold of U C R’~. Moreover, there exists a smooth
map such that I W~,x ) - identity. Every
point y E Mç,x is of the form

for some T = (tI,..., E Since ~f- 1, ... , xm are extensions to
U C R’ of the restrictions to V of vector fields ..., X "2 on S, it follows

x 1 x -that ... , preserve V. Moreover, x E V so that

Hence, is contained in V C S.

Let tmv : Mi,z ’--* V be the inclusion map. We want to show that

it is smooth. Let M~,~ ~ U C R’ and 6v : ~ -~ U C R’ be
the inclusion maps. Then tm and every
function f E C°° ( U) . Since M~,~ is an immersed submanifold of U, it follows
that L M f E for all f E C°° (U) . Similarly, V is a differential
subspace of U so that t) f E C~(V) for all f E Moreover, every
fv E GCXJ(V) is locally of the form Lvf for some f E C°° ( U) . Since
differentiability is a local property, it follows that L MV fv E C’(M~,~,)
for every fv E C’ (V). Hence, tmv : - V is smooth.

Thus, for every open set V in S, that is diffeomorphic to a subset of
BT, each x E V, and every g = (X 1, ... , X~) such that X 1 (x), ... , 
form a basis of D.Fx, we have a manifold contained in Tl such that

the inclusion map V is smooth. Since V is open in S, the
inclusion of M~,x into ,S’ is smooth.



2275

Suppose that then

for and Hence,

Since and J-lÇ2,x2 are smooth, it follows that the identity map on

MÇI ,Xl nMÇ2,X2 is a diffeomorphism of the differential structures on n

induced by the inclusions into and M~2,X2 , respectively.
Therefore U is a manifold contained in ,S’ and the inclusion

of U into ,S’ is smooth.

Since M = Uç,x the above argument shows that M is a manifold
contained in S such that the inclusion map M ~ ,S’ is smooth. Moreover,
the manifold topology of M agrees with the topology T discussed above.
Finally, equation (8) implies that M is an integral manifold of Dz. 0

We see from Theorem 3 that a locally complete family ,~’ of vector
fields on a subcartesian space ,S’ gives rise to a partition of ,S’ by orbits of .~’.
We shall refer to such a partition as a singular foliation of S.

THEOREM 4. - Orbits of the family of all vector fields on

a subcartesian space S are manifolds. For every of vector fields

on S, orbits are contained in orbits of X (,S’) .

Proof. We have shown in Theorem 2 that the family of all

vector fields on ,S’ is locally complete. Hence, it gives rise to a partition of S
by manifolds. If ,~ is a family of vector fields on S, then ,~’ C and

every orbit of .~’ is contained in an orbit of X (,S’) . m

Theorem 4 asserts that the singular foliation of a subcartesian space S
by orbits of the family of all vector fields on ,5’ is coarsest within the

class of singular foliations given by orbits of locally complete families of
vector fields. The following example shows that there may be partitions
of a differential space into manifolds which are coarser than the singular
foliation by orbits of 

Example 3. - Let ,S = MI U M2 U M3 U M4, where

and

and

Ms = {(0, -1)} and M4 = {(0,1)}. Clearly, MI and M2 are manifolds of
dimension 1, while M3 and M4 are manifolds of dimension 0. However, for
every (0, y) E M2, a vector u E T(o,y) M2 can be extended to a vector field
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on ,S’ only if u = 0. Hence, orbits of the minimal singular foliation of ,S’ are
MI and singletons {(O,y)} for -1  1.

Having established the existence of the singular foliation of ,S’ by orbits
of X(,S’), we can study arbitrary families of vector fields.

THEOREM 5. - be a family of vector fields on a subcartesian
space S. For every x E S, the orbit N of F through x is a manifold such
that the inclusion map LNS : N ~--~ S is smooth.

Proof. Since .~’ C the accessible set N of D~- through x is
contained in the orbit M of X(S) through x. Let M be the restriction
of D:F to the points of M. It is a generalized distribution on M, and N is
an accessible set of DTIM. It follows from Sussmann’s theorem ([27]), that
N is a manifold and the inclusion map LNM : N - M is smooth. Since the

inclusion tms : M - ,S’ is smooth, it follows that LNS - tNM : N - S

is smooth. D

6. Stratified spaces.

In this section we show that smooth stratifications are subcartesian

spaces. This enables us to use the results of the preceding sections in
discussing stratified spaces. For a comprehensive study of stratified spaces
see [10], [16] and the references quoted there.

Let S be a paracompact Hausdorff space. A stratification of S is given
by a locally finite partition of ,S’ into locally closed subspaces M C S, called
strata, satisfying the following conditions:

MANIFOLD CONDITION. - Every stratum M of S is a smooth

manifold in the induced topology.

FRONTIER CONDITION. - If M and N are strata of S such that

the closure N of N has a non-empty intersection with M, then M C lV.

A smooth chart on a stratified space ,S’ is a homeomorphism cp of an
open set U C ,5’ to a subspace p(U) of R’ such that, for every stratum M
of S, the image p(U n M) is a smooth submanifold of Rn and the restriction

is smooth. As in the case of manifolds, one
introduces the notion of compatibility of smooth charts, and the notion of
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a maximal atlas of compatible smooth charts on S. A smooth structure on
,S’ is given by a maximal atlas of smooth charts on S. A continuous function
f : S --&#x3E; R is smooth if, for every xES and every chart U - R’ with

x C U, there exist a neighbourhood Ux of x contained in U and a smooth
function g : R’ -~ R such that flUx = I Ux. For details see [16],
sec. 1.3.

Stratifications can be ordered by inclusion. If we have two stratifi-
cations of the same space S, we say that the first stratification is smaller
than the second if every stratum of the second stratification is contained

in a stratum of the first one. For a stratified space S, there exists a min-
imal stratification of S. Some authors reserve the term stratification for a

minimal stratification.

THEOREM 6. - A smooth stratified space is a subcartesian space.

Proof. Let ,S’ be a smooth stratified space and C°° (,S’) the space
of smooth functions on S’ defined above. First, we need to show that the
family COCJ (S) satisfies the conditions given at the beginning of Section 2.

A family IWIIIEA of open sets on S is a subbasis for the topology of
,S’ if, for each x G S and each open neighbourhood V of x in S, there exist

aI,...,ap E A such that x E Wal C V. Given x E S’, there
exists a chart p on ,S’ with domain U containing x. If V is a neighbourhood
of x in S, then the restriction of p to V n U is a homeomorphism on a
set cp(Y n U) in R’ containing cp(x). There exist an open neighbourhood
W of x in V n U such that E p(W) C cp(W ) C cp(Y n U) and a
function f E such that f W = 1 and f I SB (V n U) - 0. Hence,
x ~ /~((0,2)) C V. This implies that condition 2.1 is satisfied.

Suppose that fi , ... , f n E C°° ( S) and F : We want to show

that F ( f 1, ... , E C°° (,S’) . For every x E S and every chart U - R’

with x E U, there exist a neighbourhood Ux of x contained in U and
smooth functions gm : JRn -~ R such that fi I I U~ for
i = 1, ... , m. Hence,

and condition 2.2 is satisfied.

In order to prove condition 2.3, consider f : S - R such that, for
every there exist an open neighbourhood YV~ of x and a function
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fz E C°° (S) satisfying

Given x E S, let fx E C°° (,S’) and an open neighbourhood Wx be such that
equation (9) is satisfied. Let p : U - R’ be a chart such that x E U. There
exist an open neighbourhood Ux of x contained in Wx n U and a smooth
function M" -~ R such that = Ux . Since Ux C Wx n U,
it follows from equation (9) that flUx = This holds for every

which implies that f E 

We have shown that smooth functions on S satisfy the conditions for
a differential structure on S. Thus, ,S’ is a differential space. Local charts

are local diffeomorphisms of ,S’ onto subsets of This implies that S is a
subcartesian space. 0

A stratified space ,S’ is said to be topologically locally trivial if, for
every r e S, there exist an open neighbourhood U of x in S, a stratified
space F with a distinguished point o E F such that the singleton fol is a
stratum of F, and a homeomorphism ~7 2013~ (M n U) x F, where M is the
stratum of ,S’ containing x, such that p induces smooth diffeomorphisms
of the corresponding strata, and ~p(g) - (y, o) for every g E M n U.

The stratified space F is called the typical fibre over x. Since we are

dealing here with the Coo category, we shall say that a smooth stratified
space ,S’ is locally trivial if it is topologically locally trivial and, for each

the typical fibre F over ,S’ is smooth and the homeomorphism
p : ~7 2013~ (M n U) x F is a diffeomorphism of differential spaces. In [8]
we have shown that the orbit space of a proper action is locally trivial.

The stratified tangent bundle TS S of a stratified space ,S’ is the union

of tangent bundle spaces T M of all strata M of S. We denote by T : TS S ---+
,5’ the projection map such that for every r e S, = where M is

the stratum containing x. For each chart p on S, with domain U and range
V C JRn, one sets TSU = T-1 (U) and defines Top : T’V C JR2n by
requiring that I T M n = I M n U) for all strata M of S.
One supplies with the coarsest topology such that all C T’S

are open and all Tcp are continuous, see [16]. A stratified vector field on S
is a continuous section X of T such that, for every stratum M of S, the
restriction X M is a smooth vector field on M.

Let ,S’ be a smooth stratified space. By Theorem 6, it is a subcartesian
space. The above definition of a stratified vector field does not ensure

that it generates local one-parameter groups of local diffeomorphisms of
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S. Conversely, one often uses the term stratification for a partition of a
smooth manifold ,S’ which satisfies the Manifold Condition and the Frontier
Condition. In this case, there exist vector fields on S, that generate local
one-parameter groups of local diffeomorphisms of S, but are not stratified
in the sense given above. In this paper, we shall use the term strongly
stratified vector field on ,S’ for a vector field X on ,S’ that generates a local

one-parameter group of local diffeomorphisms of S, and is such that, for
every stratum M of S, X restricts to a smooth vector field on M. Thus, a

strongly stratified vector field on ,S’ generates a local one-parameter group
of local diffeomorphisms of ,S’ that preserves the stratification structure

of S.

LEMMA 10. - Let S be a locally trivial stratified space, and XM
a smooth vector field on a stratum M of S. For every x E M, there exist a

neighbourhood W of x in M and a strongly stratified vector field X on S
such that Xm I W - X I W.

Proof. Let cpt be the local one-parameter group of local diffeo-

morphisms of M generated by Since S’ is locally trivial, there exist a
neighbourhood U of x in S, a smooth stratified space F and a diffeomor-
phism x F such that cP induces smooth diffeomorphisms
of the corresponding strata, and p(y) = (y, o) for every y E M n U. Each
stratum of (M n U) x F is of the form (M n U) x N, where N is a stratum
of F. Let XU be a stratified vector field on (M n U) x F such that, for
every stratum N of F,

It is a derivation generating a local one-parameter group of local diffeo-
morphisms V)t of ( M n U ) x F such that, for every (y, z ) E ( M n U ) x F,

is defined whenever is defined, is contained in M n U, and

z) _ (’Pt(Y), z). Hence, Xu is a vector field on (M n U) x F.

- 

Let VI and V2 be neighbourhoods of x in ,S’ such that Vl C V2 C
V2 C U. There exists a function f E such that f Vl - 1 and
f SB V2 = 0. Let X be a stratified vector field on ,S’ such that

for

for

Since XU is a vector field on (M n U) x F, it follows that X is a vector field
on S. Let ~ = Vi U M. Since f ~ W = 1, it follows that = XM W,
which completes the proof. 0
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Let denote the family of all strongly stratified vector fields on
a smooth stratified space S.

LEMMA 11. - The family Xs (S) of all strongly stratified vector
fields on a locally trivial stratified space S is locally complete.

Proof. For X E let cpt denote the local one-parameter

group of local diffeomorphisms of S generated by X. Suppose U is the
domain of cpt and V is its range. In other words maps U diffeomorphi-
cally onto V. In Lemma 8 we have shown that, for each Y C xs (S’), cpt*Y
is a vector field on V. By Lemma 1, for every x C V, there exist an open
neighbourhood W of x in V such that W C V and a function f C 
such that f I W = 1 and f I ,5’BY = 0. Hence, there is a vector field Z
on S such that Z ~ I V = ( f I and Z ~ I ,S’B V = 0. In particular,

For every stratum M of S, the restriction of Y to M is tangent to M.
Moreover, X E Xc (S) implies that preserves M. Hence, cpt*Y restricted
to V n M is tangent to V n M . Since Z ~ I Y = I V, it follows that

Z ~ I V n M is tangent to V n M. On the other hand Z ~ I ,S’BY = 0, which
implies that Z ( (,S’BTl) n M = 0 is tangent to (~BV) n M. Hence, Z ~ M is
tangent to M. This ensures that Z is a strongly stratified vector field on S.

The argument above is valid for every X and Y in Hence,
is a locally complete family of vector fields on S. D

THEOREM 7. - Strata of a locally trivial stratified space S are
orbits of the family of strongly stratified vector fields.

Proof. By Lemma 11, the family of all strongly stratified
vector fields on ,S’ is complete. Hence, its orbits give rise to a singular
foliation of S. By definition, for each stratum M of ,5’ and every X E 
the restriction of X to M is tangent to M. Hence, orbits of are

contained in strata of S.

Let x and y be in the same stratum M of S. Since M is connected,
there exists a piecewise smooth curve c in M joining x to y. In other words,
there exist vector fields X m ...... Xf m on M such that y = ... ° CPt (x),
where p§ is the local one-parameter group of local diffeomorphisms of M
generated by X M for i = 1, ... , f . 1 

for every
i = 1,..., t and t E There exist a neighbourhood Wt of xt in M
and a vector field Xt on S such that = Xi m I Wt . The family
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fwti I i - 1,...,~, t E gives a covering of the curve c joining
x to y. Since the range of c is compact, there exists a finite subcovering

i = 1, ... , .~, j = 1, ... , ni~ covering c. Hence, c is a piecewise integral
curve of the vector fields xt , i = 1,..., = 1,..., ni, on S. This implies

J

that M is an X(S) orbit. 0

THEOREM 8. - Let S be a locally trivial stratified space. Then the
singular foliation of S by orbits of the family X(S) of all vector fields on S
is a smooth stratification.

Proof. By Theorem 7, strata of the stratification of ,S’ are orbits

of a family of vector fields on S. Hence, each stratum of the stratification
of S’ is contained in an orbit of the family X(S) of all vector fields on S.
Thus, every orbit of X(S) is the union of strata. Since strata of ,S’ form a
locally finite partition of S, it follows that the singular foliation of ,S’ by
orbits of X(S) is also locally finite.

Next, we show that orbits of X(S) are locally closed. Let P be an
orbit of X(S) through E S, and M the stratum of S containing r. Let
Wo be a neighbourhood of x in ,S’ which intersects a finite number of strata
M1, ... , Mn of S. In other words,

Then

is a neigbourhood of x in P. Each Wo n Mi is an open subset of Mi. Since
Mi is locally closed, we can choose Wo sufficiently small so that there exists
a closed set Vi in ,5’ such that Wo n mi = Wo n Hence,

and

is closed as a finite union of closed sets. This shows that P is locally closed.

It remains to verify the Frontier Condition. Let P and Q be orbits of

X (~S’) such that there exists a point x E P n Q, where P is the closure of P.
We want to show that Q C P. Suppose that Q is not contained in P. Then
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there exists a point y E Q such that y / P. Since Q is an orbit of 
there exists a piecewise smooth curve -y : [0, 1] - Q such that r = ,(0) and

for all

Since y - q(I) / P, it follows that 0 ~ T  1. Then z = e P and,
for every E &#x3E; 0, there exists t e (0, E) such that + t) tt P. Since y is
piecewise smooth, there exists a vector field X on 5’ such that

Let cpX denote the local one-parameter group of local diffeomorphisms
of ,S’ generated by X. For sufficiently small to &#x3E; 0, we can choose a

neighbourhood U of z in ,S’ such that cpX is defined on U for all 0  t  to.
Let t E (0, to) be such that + t) V P. We have

Since z E P, it follows that 0. Since P is an orbit of X(S), it follows
that cps (U n P) C P for all 0  s  t. Moreover, cpX is a diffeomorphism
of U on its image mapping U n P onto pf (U n P). Hence

which contradicts the assumption that + t) V P. This implies that
Q C P, which completes the proof that the singular foliation of ,S’ by orbits
of the family X(S) of all vector fields on ,S’ is a stratification.

We still need to show that the stratification of ,S by orbits of the
family X(S) of all vector fields on ,S’ is smooth. By assumption, S is a
smooth stratified space, hence its smooth structure is determined by a
maximal atlas of compatible smooth charts on S. Let cp be a chart of this
atlas with domain U and range p(U) C R’ . For each orbit M of X(S),
the intersection M n U is a manifold contained in U, and p(M n U) is a
manifold contained in p(U) because is a diffeomorphism. Suppose that
f : p(U n M) - R is smooth. Since M is locally closed, it follows that

p(U n M) is a locally closed subset Hence, for every y E p(U n M),
there exist a neighbourhood V of y in R’ and f E C’ (R’) such that
f = f Since cp is a smooth map of U into

E C°° (U) . Moreover,
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Since this is valid for every y E cp(U n M), it follows that p I U n M :
~p ( U n M ) is smooth. This holds for every chart cp and every orbit

M of X(S) . Hence, the stratification of S by orbits of x(S) is smooth with
respect to the atlas defining the smooth structure on S. D

Remark. - In Theorem 8, we have assumed that the original
stratification of s is locally trivial. We do not know if the stratification
of ,S’ given by orbits of X (S) is locally trivial.

7. Poisson reduction.

We can now return to the problem of Poisson reduction of a proper
symplectic action

of a Lie group G on a symplectic manifold (P, w), which has motivated this
work. Here, w is a symplectic form on P and, for every g E G, = w.

For every p E P, the isotropy group Gp of p is given by

Since the action 4J is proper, all isotropy groups are compact. For every
compact subgroup K of G, the set

of points of isotropy type K, and the set

is conjugate to ~C}
of points of orbit type K are local manifolds. Thus means that connected

components of PK and P(K) are submanifolds of P ([4]).
Let S = P/G denote the orbit space of the action (D and p : P - S

the orbit the orbit map associating, to each p E P, the orbit Gp = I
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g E G} of G through p. The orbit space ,S’ is stratified by orbit type ([9]).
In other words, strata of ,S’ are connected components of p(P(K) ), as K
varies over compact subgroups of G for which P~K) ~ 0. The space ,S’ is a

differential space with a differential structure introduced in [17],
which consists of push-forwards to S of G-invariant smooth functions on
P, it is locally trivial and minimal ([6], [7]). Minimality of the stratification
implies that its strata are orbits of the family of all vector fields on S.

For each f E C°° (P), the Hamiltonian vector field of f is the vector
field X f on P defined by

where J denotes the left interior product of vector fields and forms. The
Poisson bracket of f 1, f 2 E C°° (P) is given by

It is antisymmetric, satisfies the Jacobi identity

and the Leibniz rule

for 

Since the action lF of G on P preserves the symplectic form w, the
induced action of G on C°° (P) preserves the Poisson bracket. Hence, the
space C°° (P)G of G-invariant functions in C°° (P) is a Poisson sub-algebra
of C°° (P) . The differential structure

is isomorphic to This implies that the Poisson bracket on

C°° (P)G induces a Poisson bracket on such that

for every hl , h2 E C°° (S’) .
For every h E we denote by Xh the derivation of 

given by
for all

Sjamaar and Lerman showed that, for every there exists a unique
maximal integral curve q of Xh through x ( ~21~ ). For every f E Coo(S),
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where is the Hamiltonian vector field of p* h E COCJ (P) defined by
equation (10). Since p* h is G-invariant, the one-parameter local group

local diffeomorphisms of P generated by Xp*h commutes with
the action of G. If p E p-’(x) C P, then - po cp;P*h (x). Hence,
translations along integral curves of Xh give rise to a local one-parameter
group of local diffeomorphisms of S’ such that - cp;h 0 p.
This implies that the derivation Xh of is a vector field on ,5’ in the

sense of the definition adopted in Section 4. We shall refer to Xh as the
Hamiltonian vector field on ,S’ corresponding to h E 

Hamiltonian vector fields on (P, w) preserve the symplectic form w.
Hence, they preserve the Poisson bracket on (P, w). In other words,

for all

Restricting this equality to G-invariant functions, and taking into account
the definition of the Poisson bracket on S, equation (11), we obtain

for all

Let H(S) denote the family of all Hamiltonian vector fields on S.

PROPOSITION 4. - The is locally complete.

Proof. For X f E H(S), let pt denote the local one-parameter
group of local diffeomorphisms of S’ generated by X f . Suppose U is the do-
main of pt and V is its range. In other words cpt maps U diffeomorphically
onto V. For each Xh E H(S), ’Pt*Xh is in Der(C°° (Y)). We have shown in
the proof of Theorem 3 that is a vector field on V.

It follows from equation (2) that, for each k E 

(k I ~) _ ’P*-t(Xh’ (~t ~) ) _ (pltfh, 
where we have taken into account equation (12). Hence, (’Pt*Xh) is the inner
derivation of Coo (V) corresponding to the restriction of t

to V.

For every x E V, there exists an open neighbourhood W of x such
that W C V. Let h E C°° (,S’) be such that h W = ’P*-th I W. It follows
that = Xh ~ W. Hence, H(S) is complete. 0

Proposition 4 and Theorem 3 imply that orbits of the family H(S)
of Hamiltonian vector fields on S’ give rise to a singular foliation of S.
Moreover, local flows of Hamiltonian vector fields of G-invariant functions
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on P preserve local manifolds PK ([8]). Hence, every Hamiltonian vector
field Xh on S, corresponding to h E is strongly stratified with
respect to the stratification of ,S’ by orbit type. Therefore, orbits of 
are contained in strata of the stratification of ,S’ by orbit type. Moreover,
each orbit of is a symplectic manifold ([12] p. 130).

8. Subcartesian Poisson spaces.

In this section we generalize the notion of a Poisson manifold to a
subcartesian space.

Let ,S’ be a subcartesian space. It will be called a Poisson space if

its differential structure has a Poisson algebra structure and inner
derivations are vector fields on S. We denote the Poisson bracket

of fi and f2 in C°° (S) , and assume that the map

is bilinear, antisymmetric and satisfies both the Jacobi identity
(13)

for all

and the derivation condition

Let

It follows from equation (14) that each X f E H(S) is a derivation of

C°° (,S’) . Since derivations on a subcartesian space needs not be vector

fields, we make an additional assumption that, for each f E C’(S), the
derivation X f E U(S) is a vector field on S. The vector field X f is called
the Hamiltonian vector field of f. The Jacobi identity implies that is

a Lie algebra subalgebra of DerCoo(S). The Lie bracket on H(S) satisfies
the identity

for all

We shall refer to H(S) as the family of Hamiltonian vector fields on S.

LEMMA 12. - For each open subset U of a Poisson space S, the
Poisson bracket on COO(S) induces a Poisson bracket on C°° (U) .
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Proof. Let h 1, h2 E C°° ( U ) . Since U is open in S, for each point
.r E U, there exist a neighbourhood Ux of x in U and functions fi,x,
f2,x E Coo(S) such that hi = I Ux and h2 I f2,x 
We define

where the right hand side is the value at x C ,5’ of the Poisson

bracket of functions in C°° (,S’) . We have to show that the right hand side
of equation (16) is independent of the choice of Ux and and f2,~. Let
U~ be another open neighbourhood of x in U and f2"x E C’(S) such
that hi Ux = and h2 Then,

and

Hence, and vanish on Moreover,

&#x3E; fl,x ) 16’~) ~ k 1, x, f 2,x + 

and vanish on Ux This

proves that the Poisson bracket on C°°(U) is well defined by equation (16).
Moreover, it is bilinear, antisymmetric and satisfies equations (13) and (14)
because the Poisson bracket on has these properties. D

LEMMA 13. - The Poisson on C°° (,S’) is invari-

ant under the local one-parameter groups of local diffeomorphisms of S

generated by Hamiltonian vector field.

Proof. For X f E H(S), let pt denote the local one-parameter
group of local diffeomorphisms of S generated by X. Suppose U is the do-
main of pt and V is its range. In other words cpt maps U diffeomorphically
onto V. We want to show that

for all

Differentiating the left-hand side with respect to t we get
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because of Jacobi identity (13). Since = fi, it follows that

which completes the proof. 0

LEMMA 14. - Let S be a subcartesian Poisson space. The family
1i(S) of Hamiltonian vector fields is locally complete.

Proof of this lemma is identical to the proof of Proposition 4.

THEOREM 9. - Let S be a subcartesian Poisson space. Orbits of

the family X(S) of all vector fields on S are Poisson manifolds. Orbits of
the family of Hamiltonian vector fields are symplectic manifolds. For
each Poisson leaf M, orbits of1i(S) contained in M give rise to a singular
foliation of M by symplectic leaves.

Proof. Let M be an orbit of X(S). By Theorem 4, it is a smooth
manifold. Let C°° (M) be the space of smooth functions on M defined in
terms of the manifold structure of M. Let T denote the manifold topology
of M described in Section 6. A function h : M - 1I~ is in C°° (M) if and
only if, for each x E M, there exists Y E T such that x E V and there
exists a function fx E C’(S) such that h V = Ix I V.

For hl, h2 E C°° (M) and x E M, let V e T, and f2,x E C°° (S)
be such that hi I V = I V for i = 1, 2. We define f hl, h2 I m by the
requirement that

We have to show that the right-hand side of equation (19) is independent
of the choice of and /2,a; in Suppose that f2lx E 
satisfy the condition hi V = fi,x I V for i = 1, 2. Let = (fI,x - 
Then, Y = 0, and

Since lVl is an orbit of V is an open subset of M, and Y = 0
and I V = 0, it follows that I V = (X ~ 1~2,~ ) ~ I V = 0 for all
X E x(~S’). I V = ( V = 0 and is

well defined.
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It follows from equation (19) that C°°(M). The Poisson
bracket properties of {. , . } M follow from the corresponding properties of
the Poisson bracket on C°° (,S’) .

By Lemma 14, the family of Hamiltonian vector fields on S is

complete. Hence, its orbits give rise to a singular foliation of S. Theorem
4 implies that each orbit of H(S) is contained in an orbit of 

We have shown that each orbit M of is a Poisson manifold.

Orbits of contained in M coincide with orbits of the family of
Hamiltonian vector fields on M, which gives rise to a foliation of M by
symplectic leaves of M ([12] p. 130). D

Let ,~ be a Poisson space, and G be a connected Lie group with Lie

algebra g. We denote by

an action of G on S. We assume that this action is smooth, which implies
that, for each g E G, the map (Dg : ,S -~ S is a diffeomorphism. Moreover,
we assume that, for every g E G,

is an automorphism of the Poisson algebra structure of C°° ( S’) . In other
words,

for all and

Finally, we assume that the action (D is proper.

For each ~ E g, we denote by Xç the vector field on ,S generating the
action on S of the one-parameter subgroup exptç of G. Clearly, X~ E X (S)
for all ~ E g. Since G is connected, its action on ~S’ is generated by the
action of all one-parameter subgroups. Hence, each Poisson manifold of S
is invariant under the action of G on S. We denote by ~M : G x M 2013~ M
the induced action of G on a Poisson manifold M. The assumptions on the
action of G on ,S’ imply that the action 4bm is smooth and proper. Moreover,
it preserves the Poisson algebra structure of COCJ (M).

Let RM = M/G denote the space of G-orbits in M and pM : M ~
R~ the orbit map. Since M is a manifold, and the action of G on M is
proper, it follows that RM is a stratified space which can be covered by open
sets, each of which is diffeomorphic to an open subset of a semi-algebraic
set ([8], p. 727). Hence, RM is a subcartesian space.

The differential structure COCJ (RM) is isomorphic to the ring C, (M)G
of G-invariant smooth functions on M. Since the action of G on M preserves
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the Poisson on C°° (M), it follows that is a

Poisson subalgebra of C°° (M) . Hence, C°° (RM ) inherits a Poisson bracket

For h E C°° (RM), let f = pMh E C-(M)G . Let Xh be the
derivation of given by for all h’ E 

Similarly, X f is the derivation of C°° (M) given by for

all f’ E C°° (M) . The vector field X f generates a one-parameter group
of local diffeomorphisms of M which commutes with the action of G on M.

Hence, put induces a local one-parameter group of local diffeomorphisms qbt
of the orbit space RM = M/G such that ’l/JtOPM == The local group

Ot is generated by Xh. Hence, Xh is a vector field on RM.

It follows from the above discussion that the orbit space RM is a

subcartesian Poisson space. Hence, we can apply the results of Theorem 9.

PROPOSITION 5. - Let M be a Poisson manifold, and RM = M/G
be the orbit space of a properly acting Lie symmetry group G of the Poisson
structure on M. Then RM is a subcartesian Poisson space. It is a stratified

space. Strata of RM are orbits of the family X(RM) of all vector fields
on RM. Each stratum is a Poisson manifold. The singular foliation of
RM by orbits of the Lie algebra ’H(Rm) of Hamiltonian vector fields of

gives rise to a refinement of the stratification of RM by symplectic
manifolds.

Proof. It follows from Theorem 9 that orbits of the family 
of all vector fields on RM are Poisson manifolds. Stratification structure of

RM and its smoothly local triviality are consequences of the properness of
the action of G on M ([9], [6], [7]). It follows from Theorem 7 and Theorem
9 that strata of RM are Poisson manifolds. Moreover, Theorem 9 implies
that orbits of the family 1t(RM) of Hamiltonian vector fields are symplectic
manifolds. The restriction of the singular foliation of RM by symplectic
manifolds to each stratum of RM gives rise to a singular foliation of the
stratum by symplectic manifolds. 0

Let R = ,S’/G be the space of G-orbits in Sand p : S - R the orbit
map. It is a differential space with differential structure Coo (R) isomorphic
to the ring of G-invariant smooth functions on S. The Poisson

algebra structure of induces a Poisson structure on C"(R). It

follows from Corollary 3 and the discussion preceding it, that R is singularly
foliated by Poisson manifolds, and each Poisson leaf is singularly foliated
by symplectic leaves. We do not know if R is a subcartesian space. Hence,
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we cannot assert that Poisson leaves of R are orbits of the family x(R) of
all vector fields on R, or that symplectic leaves of R are orbits of the family

of Hamiltonian vector fields.

9. Almost complex structures.

In this section, we discuss almost complex structures defined on

complete families of vector fields on subcartesian spaces. We assume here
that the subcartesian space under consideration is paracompact. By a
theorem of Marshall, this assumption ensures the existence of partitions
of unity ([13]).

Let .~’ _ be a complete family of vector fields on a para-
compact subcartesian space S. We denote by the submodule

of derivations of consisting of locally finite sums where

Coo(S), xa E .% ’ and, for every XES, there is an open neighbourhood
U of x in S’ such that U = 0 for almost all a. Abusing somewhat
the common terminology, we shall refer to as the module of

derivations generated by F.

PROPOSITION 6. - For every complete family 0 of vector fields
on a paracompact subcartesian space S, the module of

derivations generated by 0 is a Lie subalgebra of the Lie algebra of all
derivations of 

Proof. Recall that the completeness of implies
that, for every a, (3, t, and x for which is defined, there exist an
open neighbourhood U of x and 7 E A such that I U = X, I U.
Hence, there exists E such that [xa,xJ3] U I
U. In this way we get an open cover Ll =~U~ of S. By shrinking open
sets U, if necessary, we may assume that the covering U =~U~ is locally
finite. Since S is paracompact, there exists a partition of 
subordinate to this covering ([13]). Hence, 
where the sum on the right-hand side is locally finite. This implies that

Since the sum is locally finite, it implies that [X, Y] E 0
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An almost complex structure on a complete family T of vector fields
on S is a C’ (S) module automorphism J : DerF(COO(S)) --~ DerF(COO(S))
such that j2 = -1. Since J : is a C°° (,S’)
module automorphism, it implies that, for each orbit ll~ it gives rise to
a linear map J M : T M -~ T M. Moreover, j2 = -1 implies that j2M = -1.
Hence, an almost complex structure on a complete family .~’ of vector fields
on ,S’ induces an almost complex structure on each orbit of T.

Since is a Lie algebra, we may consider the torsion N
of J defined as follows. For X, Y E DerF(COO(S)), let

LEMMA 15. - The torsion of J is a skew symmetric bilinear

mapping N : Q9 DerF(Coo(S)) such that
N( f X, hY) = fhN(X, Y) for all X, Y in DerF(Coo(S)) and f, h E C°° (,S’) .

Proof. Skew symmetry and bilinearity of N are self-evident. For
every X, Y E and f, h E C°° (,S’) :

Hence, 7V(/X, hY ) = fhN(X, Y), which completes the proof. 0

The almost complex structure J has eigenvalues ±i because J2 = -1.
Eigenspaces of J are contained in the complexification 0 C
of For every X E 

Hence

are eigenspaces of J corresponding to eigenvalues ±i, respectively.

LEMMA 16. - Eigenspaces of J are closed under

the Lie bracket if and only if the torsion N of J vanishes.
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Proof. For every X and Y in we have

Hence, [X - E if and only if

N(X, Y) = 0. D

THEOREM 10. - Let J be an almost complex structure on a
complete family F of vector fields on a paracompact subcartesian space
S. Every orbit M of F admits a complex analytic structure such that

I M spans the distribution of holomorphic directions on
T M Q9 C if and only if the torsion N of J vanishes.

Proof. For each orbit M of ,~’, the restriction of N to M is the
torsion tensor NM of the almost complex structure JM on M. Suppose
that M admits a complex analytic structure such that 1M
spans the distribution of holomorphic directions on TM For a complex
manifold M, the distribution of holomorphic directions on TM Q9 C is

involutive. Hence, I M is closed under the Lie bracket of
vector fields on T M Q9CC. This implies that NM = 0. Therefore, if every orbit
M of ~’ admits a complex analytic structure such that 1M
spans the distribution of holomorphic directions on TM Q9 C, then the
torsion N vanishes.

Suppose now that N = 0. Then NM - 0 for every orbit M of ,~’. It
follows that the almost complex structure JM on M is integrable. By the
Newlander-Nirenberg theorem, there exists a complex analytic structure
on M such that M spans the distribution of holomorphic
directions on TM Q9 CC ([15]). Naively speaking, one could say that this
complex structure is obtained by patching local diffeomorphisms from Cn
to M in a manner similar to that used in the proof of Theorem 3. D

Assuming that the torsion tensor N of J vanishes, we are going to
characterize smooth functions on ,S’ which are holomorphic on each orbit
of0. Let Coo(8)C == 0 C be the complexification of C°° (,S’) . Each
function in COO(S)C is of the form f + ih, where f, h E Coo(S). Such a
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function is holomorphic on each orbit if it is annihilated by derivations
in In other words, a function f + ih is holomorphic on
orbits of ,~’ if it satisfies the differential equation (X + zJX)(/ + ih) - 0
for each X E T7. Separating real and imaginary parts we get a singularly
foliated version of Cauchy-Riemann equations

and for all

It should be noted that these equations may have very few solutions which
are globally defined. This is why one usually employs sheaves in the study
of holomorphic functions ([24]).

Combining the results of the last two sections, we can describe
subcartesian Poisson-Kdhler spaces.

Example 3. - Let ,S’ be a subcartesian Poisson space. It follows from
the definition of Hamiltonian vector fields on S’ that the Poisson bracket

( f, hl on C°° (,S’) satisfies the relations

Hence, there exists a skew symmetric form SZ on H (S) with values in C°° (,S’)
such that

By Theorem 9, every orbit M of is a symplectic manifold. The
symplectic form S2M of M is given by the restriction of Q to M. Let
J : DerH(S) C°° (S) be an almost complex structure
on H(X) such that

for all X E Define

for all X, Y E Der1t(s) COO(S). It is symmetric because

If g(X, Y) is positive definite, that is g(X, X ) (x) - 0 only if X (x) - 0,
then its restriction to every orbit M of H(S) defines a Riemannian metric
gM on M. For every X, Y E H (S) and x E M, 
OM(JX(X), Y(x)) and the form OM is closed. Hence, M is an almost Kähler
manifold. If the torsion N of J vanishes, then every orbit M of 1t(S) is
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a Kahler manifold. This example is a generalization to subcartesian spaces
of Kdhler stratified spaces studied by Huebschmann ([11]).
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