It is known that generators of ideals defining projective toric varieties of dimension embedded by global sections of normally generated line bundles have degree at most . We characterize projective toric varieties of dimension whose defining ideals must have elements of degree as generators.
Il est connu que les générateurs de l’idéal annulateur d’une variété torique projective de dimension , plongée par les sections globales d’un fibré en droites normalement engendré, sont de degré au plus . Nous caractérisons les variétés projectives de dimension dont un générateur au moins de l’idéal annulateur doit être de degré .
Keywords: toric varieties, convex polytopes, generators of ideals
Mot clés : variétés toriques, polytopes convexes, générateurs d'idéaux
Ogata, Shoetsu 1
@article{AIF_2003__53_7_2243_0, author = {Ogata, Shoetsu}, title = {On projective toric varieties whose defining ideals have minimal generators of the highest degree}, journal = {Annales de l'Institut Fourier}, pages = {2243--2255}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.2005}, zbl = {1069.14057}, mrnumber = {2044172}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2005/} }
TY - JOUR AU - Ogata, Shoetsu TI - On projective toric varieties whose defining ideals have minimal generators of the highest degree JO - Annales de l'Institut Fourier PY - 2003 SP - 2243 EP - 2255 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2005/ DO - 10.5802/aif.2005 LA - en ID - AIF_2003__53_7_2243_0 ER -
%0 Journal Article %A Ogata, Shoetsu %T On projective toric varieties whose defining ideals have minimal generators of the highest degree %J Annales de l'Institut Fourier %D 2003 %P 2243-2255 %V 53 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2005/ %R 10.5802/aif.2005 %G en %F AIF_2003__53_7_2243_0
Ogata, Shoetsu. On projective toric varieties whose defining ideals have minimal generators of the highest degree. Annales de l'Institut Fourier, Volume 53 (2003) no. 7, pp. 2243-2255. doi : 10.5802/aif.2005. https://aif.centre-mersenne.org/articles/10.5802/aif.2005/
[A] On the study of integral convex polytopes and toric varieties (2002) Master thesis, Tohoku University (Japanese)
[BGT] Normal polytopes, triangulations, and Koszul algebras, J. reine angew. Math, Volume 485 (1997), pp. 123-160 | MR | Zbl
[ES] Binomial ideals, Duke Math. J, Volume 84 (1996), pp. 1-45 | DOI | MR | Zbl
[EW] On the ampleness of invertible sheaves in complete projective toric varieties, Results in Mathematics, Volume 19 (1991), pp. 275-278 | MR | Zbl
[Fj] Defining Equations for Certain Types of Polarized Varieties, Complex Analysis and Algebraic Geometry (1977), pp. 165-173 | Zbl
[Fl] Introduction to Toric Varieties, Ann. of Math. Studies, No 131, Princeton Univ. Press, 1993 | MR | Zbl
[GL] A simple proof of Petri's Theorem on canonical curves, Geometry of Today, Giornate di Geometria (Roma, 1984), Volume vol. 60 (1985), pp. 129-142 | Zbl
[I] Commutative rings, Kiso Sugaku Algebra (Japanese), vol. 4, Iwanami Shoten, Tokyo, 1977 | MR
[K1] The number of moduli of families of curves on toric surfaces (1991) (thesis, Katholieke Universiteit te Nijmengen)
[K2] Generators for the ideal of a projectively embedded toric surfaces, Tohoku Math. J, Volume 45 (1993), pp. 385-392 | DOI | MR | Zbl
[K3] A criterion for the ideal of a projectively embedded toric surfaces to be generated by quadrics, Beiträger zur Algebra und Geometrie, Volume 34 (1993), pp. 57-62 | MR | Zbl
[M] Varieties defined by quadric equations, Questions on Algebraic Varieties (Corso CIME) (1969), pp. 30-100 | Zbl
[NO] On generators of ideals defining projective toric varieties, Manuscripta Math, Volume 108 (2002), pp. 33-42 | DOI | MR | Zbl
[Od] Convex Bodies and Algebraic Geometry, Ergebnisse der Math, 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988 | MR | Zbl
[Og] Quadratic generation of ideals defining projective toric varieties, Kodai Math. J, Volume 26 (2003), pp. 137-146 | DOI | MR | Zbl
[S1] Gröbner bases and Convex Polytopes, University Lecture Series, Vol. 8, American Mathematics Society, Providence, RI, 1995 | MR | Zbl
[S2] Equations defining toric varieties, Algebraic Geometry (Santa Cruz, 1995) (Proc. Sympos. Pure Math), Volume 62 (1997), pp. 437-449 | Zbl
Cited by Sources: