[Dynamique topologique et renormalisation des applications de type Lorenz]
L’objectif de cet article est double. D’abord, on donne une caractérisation de l’ensemble des invariants de pétrissage pour la classe des applications de type Lorenz considérées comme des applications du cercle de degré un avec une discontinuité. Dans une deuxième étape, on considère la sous-classe des applications de type Lorenz engendrées pour la classe des applications de Lorenz dans l’intervalle. Pour cette classe des applications on donne une caractérisation de l’ensemble des applications renormalisables avec intervalle de rotation dégénéré à un numéro rationnel, c’est-à-dire des applications de confinement de phase renormalisables. On obtient cette caractérisation en montrant l’équivalence entre la méthode de renormalisation géométrique et la méthode combinatoire (qu’on exprime en termes d’un produit du type défini sur l’ensemble des invariants de pétrissage. Finalement, on démontre l’existence au niveau combinatoire, de points périodiques de toutes les périodes de l’application de renormalisation.
The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking renormalizable maps. This characterization is given by showing the equivalence between the geometric renormalization procedure and the combinatorial one (which is expressed in terms of an –like product defined in the set of kneading invariants). Finally, we will prove the existence, at a combinatorial level, of periodic points of all periods for the renormalization map.
Keywords: Lorenz maps, circle maps, kneading theory
Mot clés : applications de Lorenz, applications du cercle, théorie du pétrissage
Alsedà, Lluis 1 ; Falcó, Antonio 2
@article{AIF_2003__53_3_859_0, author = {Alsed\`a, Lluis and Falc\'o, Antonio}, title = {On the topological dynamics and phase-locking renormalization of {Lorenz-like} maps}, journal = {Annales de l'Institut Fourier}, pages = {859--883}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {3}, year = {2003}, doi = {10.5802/aif.1963}, zbl = {1027.37021}, mrnumber = {2008444}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1963/} }
TY - JOUR AU - Alsedà, Lluis AU - Falcó, Antonio TI - On the topological dynamics and phase-locking renormalization of Lorenz-like maps JO - Annales de l'Institut Fourier PY - 2003 SP - 859 EP - 883 VL - 53 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1963/ DO - 10.5802/aif.1963 LA - en ID - AIF_2003__53_3_859_0 ER -
%0 Journal Article %A Alsedà, Lluis %A Falcó, Antonio %T On the topological dynamics and phase-locking renormalization of Lorenz-like maps %J Annales de l'Institut Fourier %D 2003 %P 859-883 %V 53 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1963/ %R 10.5802/aif.1963 %G en %F AIF_2003__53_3_859_0
Alsedà, Lluis; Falcó, Antonio. On the topological dynamics and phase-locking renormalization of Lorenz-like maps. Annales de l'Institut Fourier, Tome 53 (2003) no. 3, pp. 859-883. doi : 10.5802/aif.1963. https://aif.centre-mersenne.org/articles/10.5802/aif.1963/
[1] A characterization of the kneading pair for bimodal degree one circle maps, Ann. Inst. Fourier, Volume 47 (1997) no. 1, pp. 273-304 | DOI | Numdam | MR | Zbl
[2] Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific, Singapore, 1993 | MR | Zbl
[3] Periods and entropy for Lorentz-like maps, Ann. Inst. Fourier, Volume 39 (1989) no. 4, pp. 929-952 | DOI | Numdam | MR | Zbl
[4] Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity, Volume 3 (1990), pp. 413-452 | DOI | MR | Zbl
[5] Kneading theory for a family of circle maps with one discontinuity, Acta Math. Univ. Comeniae, Volume LXV (1996), pp. 11-22 | MR | Zbl
[6] Iterated maps on the interval as dynamical systems, Progress in Physics, Birkhäuser, 1980 | MR | Zbl
[7] Bifurcations and symbolic dynamics for bimodal degree one circle maps: The Arnol'd tongues and the Devil's staircase (1995) (Ph.D. Thesis, Universitat Autònoma de Barcelona)
[8] Topological conjugation of Lorenz maps by -transformations, Math. Proc. Camb. Phil. Soc., Volume 107 (1990), pp. 401-413 | DOI | MR | Zbl
[9] Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, Volume 62 (1993), pp. 22-50 | DOI | MR | Zbl
[10] A strange, strange attractor. The Hopf bifurcations and its applications, Appl. Math. Sci., 19, Springer-Verlag, 1976
[11] Structural stability of Lorenz attractors, Publ. Math. IHES, Volume 50 (1979), pp. 307-320 | Numdam | Zbl
[12] The Classification of Topologically Expansive Lorenz Maps, Comm. Pure Appl. Math., Volume XLIII (1990), pp. 431-443 | DOI | MR | Zbl
[13] Deterministic non-periodic flow, J. Atmos. Sci., Volume 20 (1963), pp. 130-141 | DOI
[14] The periodic points of renormalization, Ann. of Math., Volume 147 (1998), pp. 543-584 | DOI | MR | Zbl
[15] Universal models for Lorenz maps (1997) (Preprint, IMPA)
[16] On iterated maps on the interval I, II, Dynamical Systems (Lecture Notes in Math.), Volume 1342 (1988) | Zbl
[17] Rotation intervals for a class of maps of the real line into itself, Ergod. Th. \& Dynam. Sys., Volume 6 (1986), pp. 117-132 | MR | Zbl
[18] Singular strange attractors on the boundary of Morse-Smale systems, Ann. Sci. École Norm. Sup., Volume 30 (1997), pp. 693-717 | Numdam | MR | Zbl
[19] Sur les courbes définies par les équations différentielles, Œuvres complètes, Volume vol. 1 (1952), pp. 137-158
[20] Rotation numbers for monotone functions on the circle, J. London Math. Soc., Volume 34 (1986), pp. 360-368 | DOI | MR | Zbl
[21] The Lorenz equations: Bifurcations, chaos and strange attractors, Appl. Math. Sci., 41, Springer-Verlag, 1982 | MR | Zbl
[22] The structure of Lorenz attractors, Publ. Math. IHES, Volume 50 (1979), pp. 321-347 | Numdam | MR | Zbl
Cité par Sources :