Let , be a domain with -boundary and be a compact set such that is connected. We study univalent analytic extension of CR-functions from to parts of . Call CR-convex if its -convex hull, , satisfies ( denoting the space of functions, which are holomorphic on and continuous up to ). The main theorem of the paper gives analytic extension to , if is CR- convex.
Soit , un domaine à bord et un compact tel que soit connexe. On étudie l’extension holomorphe des fonctions CR définies sur à des sous-ensembles de . On dit que est CR-convexe si son enveloppe -convexe, , vérifie ( désigne l’espace des fonctions holomorphes sur et continues sur ). Le théorème principal de cet article prouve l’extension holomorphe à , si est CR-convexe.
Keywords: holomorphic hulls and holomorphic convexity, CR functions, removable singularities
Mot clés : enveloppes holomorphes et convexité holomorphe, CR fonctions, singularités éliminables
Laurent-Thiébaut, Christine 1; Porten, Egmon 2
@article{AIF_2003__53_3_847_0, author = {Laurent-Thi\'ebaut, Christine and Porten, Egmon}, title = {Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity}, journal = {Annales de l'Institut Fourier}, pages = {847--857}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {3}, year = {2003}, doi = {10.5802/aif.1962}, zbl = {1035.32020}, mrnumber = {2008443}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1962/} }
TY - JOUR AU - Laurent-Thiébaut, Christine AU - Porten, Egmon TI - Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity JO - Annales de l'Institut Fourier PY - 2003 SP - 847 EP - 857 VL - 53 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1962/ DO - 10.5802/aif.1962 LA - en ID - AIF_2003__53_3_847_0 ER -
%0 Journal Article %A Laurent-Thiébaut, Christine %A Porten, Egmon %T Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity %J Annales de l'Institut Fourier %D 2003 %P 847-857 %V 53 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1962/ %R 10.5802/aif.1962 %G en %F AIF_2003__53_3_847_0
Laurent-Thiébaut, Christine; Porten, Egmon. Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity. Annales de l'Institut Fourier, Volume 53 (2003) no. 3, pp. 847-857. doi : 10.5802/aif.1962. https://aif.centre-mersenne.org/articles/10.5802/aif.1962/
[1] Analytic sets, Dordrecht, 1989
[2] Radó's theorem for CR mappings of hypersurfaces, Russian Acad. Sci. Sb. Math, Volume 82 (1995), pp. 243-259 | DOI | MR | Zbl
[3] Removable singularities in the boundary, Contributions to Complex Analysis and Analytic Geometry (Aspects of Mathematics), Volume E26 (1994), pp. 43-104 | Zbl
[4] Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa, Volume 22 (1968), pp. 275-314 | Numdam | MR | Zbl
[5] Some remarks concerning holomorphically convex hulls and envelopes of holomorphy, Math. Z, Volume 218 (1995), pp. 143-157 | DOI | MR | Zbl
[6] Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Analysis, Volume 6 (1996), pp. 555-611 | MR | Zbl
[7] Hulls and Analytic Extension from non-pseudoconvex Boundaries (19, Feb. 2002) Preprint, Uppsala (U.U.D.M.-reports)
[8] Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (IV), Volume 150 (1988), pp. 1-21 | DOI | MR | Zbl
[9] A theorem on holomorphic extension of CR-functions, Pacific J. Math, Volume 128 (1986), pp. 177-191 | MR | Zbl
[10] Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat, Volume 32 (1994), pp. 455-473 | DOI | MR | Zbl
[11] Morse Theory, Princeton, N.J., 1963 | MR | Zbl
[12] On Gleason's decomposition for , Math. Zeitschr, Volume 194 (1987), pp. 565-571 | DOI | MR | Zbl
[13] Hebbare Singularitäten von CR-Funktionen und analytische Fortsetzung von Teilen nicht-pseudokonvexer Ränder, Dissertation, Berlin, 1997
[14] Analytic continuation of functions of several complex variables, Proc. Royal Soc. Edinburgh, Volume 89A (1981), pp. 63-74 | DOI | MR | Zbl
[15] Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc, Volume 180 (1973), pp. 171-188 | DOI | MR | Zbl
[16] Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe , Invent. Math, Volume 83 (1986), pp. 583-592 | DOI | MR | Zbl
[17] Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr, Volume 118 (1990), pp. 403-450 | Numdam | MR | Zbl
Cited by Sources: