Quasi-isometric vector bundles and bounded factorization of holomorphic matrices
Annales de l'Institut Fourier, Volume 53 (2003) no. 3, pp. 885-901.

We give a sufficient condition for a hermitian holomorphic vector bundle over the disk to be quasi-isometric to the trivial bundle. One consequence is a version of Cartan’s lemma on the factorization of matrices with uniform bounds.

Nous donnons une condition suffisante pour qu’un fibré vectoriel holomorphe hermitien sur le disque soit quasi isométrique au fibré trivial. Une des conséquences est une version du Lemme de Cartan sur la factorisation des matrices holomorphes pour les matrices holomorphes bornées.

DOI: 10.5802/aif.1964
Classification: 46F20,  32A26
Keywords: vector bundle, maximum principle
@article{AIF_2003__53_3_885_0,
     author = {Berndtsson, Bo and Rosay, Jean-Pierre},
     title = {Quasi-isometric vector bundles and bounded factorization of holomorphic matrices},
     journal = {Annales de l'Institut Fourier},
     pages = {885--901},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {3},
     year = {2003},
     doi = {10.5802/aif.1964},
     zbl = {1028.32008},
     mrnumber = {2008445},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1964/}
}
TY  - JOUR
TI  - Quasi-isometric vector bundles and bounded factorization of holomorphic matrices
JO  - Annales de l'Institut Fourier
PY  - 2003
DA  - 2003///
SP  - 885
EP  - 901
VL  - 53
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1964/
UR  - https://zbmath.org/?q=an%3A1028.32008
UR  - https://www.ams.org/mathscinet-getitem?mr=2008445
UR  - https://doi.org/10.5802/aif.1964
DO  - 10.5802/aif.1964
LA  - en
ID  - AIF_2003__53_3_885_0
ER  - 
%0 Journal Article
%T Quasi-isometric vector bundles and bounded factorization of holomorphic matrices
%J Annales de l'Institut Fourier
%D 2003
%P 885-901
%V 53
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1964
%R 10.5802/aif.1964
%G en
%F AIF_2003__53_3_885_0
Berndtsson, Bo; Rosay, Jean-Pierre. Quasi-isometric vector bundles and bounded factorization of holomorphic matrices. Annales de l'Institut Fourier, Volume 53 (2003) no. 3, pp. 885-901. doi : 10.5802/aif.1964. https://aif.centre-mersenne.org/articles/10.5802/aif.1964/

[1] L. Alexandersson On vanishing-curvature extensions of Lorentzian metrics, J. Geom. Anal, Tome 4 (1994) no. 4 | MR: 1305992 | Zbl: 0811.53064

[2] B. Berndtsson $\dbar\sb b$ and Carleson type inequalities, Complex analysis, II (College Park, Md., 1985--86) (Lecture Notes in Math) Tome 1276 (1987), pp. 42-54 | Zbl: 0627.32014

[3] A. Beurling On two problems concerning linear transformations in Hilbert space, Acta Math, Tome 81 (1948) | MR: 27954 | Zbl: 0033.37701

[4] A. Brudnyi Matrix-valued Corona theorem for multiply connected domains, Indiana Univ. Math. J, Tome 49 (2000) no. 4 | MR: 1836534 | Zbl: 1046.46503

[5] G. D. Birkhoff A theorem on matrices of analytic functions, Math. Ann, Tome 74 (1913) | MR: 1511753

[6] S. K. Donaldson; P. B. Kronheimer The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford Univ, New York, 1990 | MR: 1079726 | Zbl: 0820.57002

[7] T. W. Gamelin Wolff's proof of the Corona theorem, Israel J. Math, Tome 37 (1980) no. 1,2, pp. 113-119 | Article | MR: 599306 | Zbl: 0466.46050

[8] L. Lempert La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, Tome 109 (1981), pp. 427-474 | Numdam | MR: 660145 | Zbl: 0492.32025

[9] N. Nikolskii Treatise on the shift operator. Spectral function theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, Tome 273, Springer-Verlag, Berlin, 1986 | MR: 827223 | Zbl: 0587.47036

[10] G. Segal; A. Pressley Loop groups, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford Univer, New York, 1986 | MR: 900587 | Zbl: 0618.22011

[11] E. L. Stout The second Cousin problem with bounded data, Pacific J. Math, Tome 26 (1968), pp. 379-387 | MR: 235155 | Zbl: 0183.35201

[12] E.L. Stout On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup. Pisa, Tome 27 (1973) no. 3, pp. 1-17 | Numdam | MR: 367282 | Zbl: 0261.32008

[13] N. Wiener; P. Masani The prediction theory of multivariate stochastic processes I. The regularity condition, Acta Math., Tome 98 (1957) | MR: 97856 | Zbl: 0080.13002

Cited by Sources: