
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Lluis ALSEDÀ & Antonio FALCÓ

On the topological dynamics and phase-locking renormalization of
Lorenz-like maps
Tome 53, no 3 (2003), p. 859-883.

<http://aif.cedram.org/item?id=AIF_2003__53_3_859_0>

© Association des Annales de l’institut Fourier, 2003, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2003__53_3_859_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


859

ON THE TOPOLOGICAL DYNAMICS AND

PHASE-LOCKING RENORMALIZATION

OF LORENZ-LIKE MAPS

by Ll. ALSEDÀ &#x26; A. FALCÓ

1. Introduction.

An important question in the theory of dynamical systems is whether
small scale geometric properties of a dynamical system are determined
by the combinatorial properties of the system. In the case of unimodal
maps such universality was discovered by Coullet and Tresser and

Feigenbaum independently. In both cases renormalization ideas that arose
from statistical physics were used. The idea is to study dynamical or
parameter scaling laws by iterating certain renormalization operator acting
in the space of dynamical systems. This operator acts as a microscope: the
image under renormalization is another map in the class of maps under
consideration which describes the geometry and dynamics on a smaller
scale. In the case of unimodal maps the universality was understood by
conjecturing that the renormalization operator has a unique hyperbolic
fixed point whose invariant manifolds have certain "good" properties.

On the other hand, in the recent years some attention has been paid
to Lorenz maps and (3-transformations due to the fact that they help in
understanding the dynamics of important three dimensional flows (see [22]
and [18]). Lorenz maps were obtained by Lorenz when studying geometric

This work has been partially supported by the DGES grants numbers PB96-1153 and
BFM2002-01344, by the CONACIT grant number 2001SGR 00173 and by the grant
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Figure 1. A Lorenz map (a) and its representation as a degree one lifting (b).
models of the Lorenz equations (see [13], [10], [11], [21] and [22]). A Lorenz
map is a map f from the unit interval of the real line into itself which has
the following three properties (see Figure 1 (a) ) :

1 ) f is differentiable and monotonic for c, c E (0, 1) ;

2) limxjc .f ~x~ = 1, 1

3) there exists E &#x3E; 0 such that

Also, a map verifying 1), 2) and being topologically expansive (see [12]
for a definition) is called a topologically expansive Lorenz map. The

topological dynamics of such maps as well as more general classes of maps
(still verifying 1) and 2)) have been studied extensively in the literature
(see [8], [9], ~12~, [15] and [18]).

We observe that if f is a Lorenz map then the map F : R - R defined
by

and F(x) = F(x - E(x)) + E(x), where E(.) denotes the integer part
function (see Figure 1) is the lifting of a (discontinuous) circle map of

degree one. This map allows us to use the whole theory of rotation numbers
for degree one circle maps in the study of the Lorenz maps. This is, precisely,
the framework developed in [3]. Following this strategy, in this paper, we
will formalize the Lorenz maps as a subclass of the class of Lorenz-like

maps (see Section 2 for a precise definition). This class extends the Lorenz
maps on the interval and the topologically expansive Lorenz maps, while
reformulating them as (discontinuous) degree one circle maps.
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The main goal of this paper is twofold. First, by using Kneading
Theory, we give a classification of the Lorenz-like maps as dynamical
systems. We recall that this technique was introduced essentially by Milnor
and Thurston [16] and it is based in the notion of the kneading invariant.
The set of all these kneading invariants provides a representation of all
maps in the class under consideration as dynamical systems at the symbolic
level. The study of the topological dynamics is often much easier when done
by using the symbolic representation of the maps as kneading invariants
instead of the maps themselves. In [12] this strategy was used to provide
a topological classification of the topologically expansive Lorenz maps. For
this class of maps, a characterization of the set of all kneading pairs was
obtained ([12], Theorem 1 ) and the dynamics of each map in the class was
completely described by characterizing the set of all itineraries of the map
in terms of its kneading pair ([12], Theorem 2*). The first main result of
this paper is an extension of [12], Theorem 1, to the Lorenz-like maps (see
Theorem A in Subsection 2.1). This extension is obtained as a consequence
of the proof of the main result of [1]. To prove Theorem A we will use the
coding introduced by Alseda and Manosas in [5] which is an extension of the
Kneading Theory for continuous bimodal degree one circle maps introduced
by the same authors in [4]. This coding, in the case of the Lorenz maps, is
the natural one used by Hubbard and Sparrow in [12]. On the other hand,
in [5], Theorem 2* of [12] was extended to the class of Lorenz-like maps (see
Proposition 4) and the rotation interval of such maps was characterized in
terms of the kneading pair (see Corollary 5).

The second goal of this paper is to study the theory of renormalization
for the class of Lorenz maps. To this end, for each rational number

0  a  1, we introduce an *-like product (see [6]), denoted by a8, acting
on the set of kneading pairs of the Lorenz maps. The main properties of
the a8 product are given by Theorem B which is the second main result
of this paper. It is stated in Subsection 2.3. Afterwards, much in the
spirit of [9], a notion of renormalizable Lorenz map is introduced for the
class of Lorenz maps whose rotation interval is degenerate to a rational
in (o, 1 ) . Theorem C, which is the last main result of the paper, gives a
characterization of the renormalizable Lorenz maps. Essentially, a Lorenz

map is renormalizable if and only if its kneading invariant is a0 times

the kneading invariant of another Lorenz map. Thus the a0 product is

the symbolic version of the geometric renormalization operator and, hence,
the renorrrzalizat2on domain of the class of Lorenz maps is characterized

as the image of the a0 product for some a. Theorem C (c) is devoted to
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show the existence of periodic points of any combinatorial type for the
renormalization operator (at the kneading invariants level). We remark
that this result is the analogue (at the symbolic level) of Martens Theorem
for unimodal maps (see [14]).

This paper is organized as follows. In Section 2 we will introduce
the necessary notation, state all the main results of the paper and prove
Theorem A. Section 3 is devoted to prove Theorem B. Finally, Theorem C
is proved in Section 4.

2. Definitions and statements of the main results.

Given a map F : R we denote limyBx F(y) by F(x+) and
limyBx F(y) by F(x-), if they exist.

Now, we introduce the class £ of Lorenz-like maps as follows (see
Figure 2). We say that F E L if

(ii) is bounded, continuous, non-decreasing and 

We observe that, when defining the class we have removed the
assumption that F(0+ ) E ~0,1 ) . This is not relevant since the map
F - E(F(0+)) also belongs to ,C and verifies this restriction. Also note

that F(O) is not determined by the above conditions. So, in what follows
we will assume that F(O) is F(0+), F(0-), or both, if necessary. On the
other hand, we are not imposing any condition on the derivative of F since
for our purposes this will be irrelevant.

A Lorenz map will be a map F from such that F(0+) E ~0,1) and
F ( 1- )  F ( 1 + ) -f- 1. The class of all Lorenz maps will be denoted by 
As it has been said before, the class of Lorenz maps extends the (interval)
Lorenz maps and the topologically expansive Lorenz maps.

2.1. A characterization of the kneading pair for Lorenz-like maps.

Now, we follow [5] to introduce the coding for the class ,C. For F E ,C,
x E R and i &#x3E; 1, let di = E(F’(x)) - E(F’-’(x)). Then the reduced
itinerary of x, denoted by IF(x), is defined as
_ _ - - - - / _: / " . - - - -

where D(z) denotes the function z - E(z). Note that, since we have
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Figure 2. A Lorenz-like map.

= Îp(x + k) for all k E Z. Observe also that Îp(O) is the empty
sequence.

Let a = be a finite or infinite sequence of integers. We say
that a is admissible if it is either finite (or empty) or infinite and there
exists k ~ N such that  1~ for all i &#x3E; 1. The set of admissible sequences
will be denoted by AD. Notice that any reduced itinerary is an admissible
sequence.

Now we shall introduce some notation for admissible sequences (and
hence for reduced itineraries). The cardinality of an admissible sequence a
will be denoted by ] (if a is infinite we write lal - oo ) . We denote by S
the shift operator which acts on the set of admissible sequences of length
greater than one as follows:

We will write Sk for the k-th iterate of S. Obviously is only defined for
admissible sequences of length greater than k. Clearly, for each x E R we
have

Let a = cxlc~2 - - - an and 3 - /~i/~2 ’’’ be two sequences of integers.
We shall write ao to denote the concatenation of a and f1 (that is, to
denote the sequence We also shall use the notation an
to denote the concatenation of a n times and cx°° to denote a 0152 ....

Now we endow the set of admissible sequences with a total ordering.
Let a = al a2 - - - and J = (31(32’" be two admissible sequences such
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that We say that

To define the kneading pair of a map F E ,C we introduce the following
notation. For a point x E R we define the sequences : ..
as follows. For each n &#x3E; 0 there exists 6(n) &#x3E; 0 such that

constant value for each

this value by I

Clearly, ) are infinite admissible sequences and

for all k E Z. Moreover, for each x E R we have

We note that for

Consequently, for each
n E N we have

will be called the kneading
Clearly, for each F E L we have

Let E AD be such that a and j are infinite. We will say that
v is quasidominated by (a, ~3) if and only if

We also will say that v is dominated by (a, J) if and only if v is

quasidominated by (a, ~3) and the above inequalities are strict. Finally
we will say that v is quasidominated (respectively dominated) by F if it is
quasidominated (respectively dominated) by 

The next result, due to Alseda and Manosas [5], Proposition 4,
characterizes the set of reduced itineraries (and hence the dynamics) of
a map F E C in terms of the kneading pair. It extends [12], Theorem 2*, to
the class ,C.
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PROPOSITION 2.1. For F E £ the following statements hold:

(a) then IF (x) is quasidominated by F ;

’" 
(b) AD is dominated by F then there exists x E (o, 1 ) such that

From this proposition it arises naturally the question of characterizing
the set of all kneading pairs of all maps from class ,C. The following result,
which follows from [1], Proposition 3.3, gives a first approach to this

problem.

PROPOSITION 2.2. - For each _ ) are q u asi -
dominated by F.

To characterize the pairs of admissible sequences that can occur as a

kneading pair of a map from ,C we will define a set S c .AD x which

turns to be the set of all kneading pairs of maps from ,C. To define the set E
we introduce the following notation.

Let a = alcx2 ~ ~ ~ be an admissible sequence. We will denote by
a’ the sequence + 1)~2’’’. Now, let E* be the set of all pairs

such I = oo for i = 1, 2 and the following
conditions hold:

(KP2) v2 is quasidominated by (!!1, v2) for all i E {I, 21.
Condition (KP2) says, in particular, that vl and v2 are minimal and

maximal, respectively, according to the following definition. For a E AD
we say that a is minimal (resp. maximal) if and only S"(a)

As we will see, the above set contains (among others) the kneading
pairs of maps from ,C with non-degenerate rotation interval. To deal with
some special kneading pairs associated to maps with degenerate rotation
interval we introduce the following sets.

where E : R - Z is defined as when x rt. Z otherwise. Also,
we set
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denote the sequence which satisfies

We note that Sa n S* = 0 for each a E R, because condition (KPI) does
not hold for any of the elements of ~a. Finally we denote by E the set
E* U (UAER 

The following result characterizes the kneading pairs of maps from ,C.

THEOREM A. - For F E ,C we have J’C(F) E S. Conversely, for each
there exists F E L such that lC(F) = (vl, v2).

Proof. Assume that F and set /C(F) = (~1~2). From
Proposition 2.2 it follows that (KP2) holds. If (KP1) holds then we are
done. Otherwise, we V2. From [1], Theorem A, it follows that

then

So assume that vi &#x3E; v2. Recall that if F(1+) = F(0+) + 1  F(I-) then
v i  v2 . Hence, F ( 1 + ) = F ( 1- ) and F is continuous. Then in a similar way
to the proof of Theorem 5.1 of [1] it follows that E Ea for some a E R.

Now, assume that i z for some a E R then

the theorem follows from [1], Theorem 5.1. So assume that ~*’

Set vi = di,x - - - for i==1,2. Since vi and v2 are admissible there
exist kl, k2 E Z such that ~1  k2 for all j 2:: 1 and i E ~ 1, 2}. Let

be such that F(0+) = 1 and F(1-) _ ~2 + 1. Clearly

and vi is dominated by F for i = 1, 2. From Proposition 2.1 (b) there exists
xi E (0,1) such that. By [5], Lemma 1, we have

_ because v1  vi  V2. Then

consider the map F* E ,C defined by

Clearly, and the theorem holds.
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To define the ambient space of the set E we introduce the sets:

: there exists j E AD such that (

: there exists a E such that (

The following result characterizes the sets 6, and 55 (see [Falco],
Theorem 3.1.1 ) .

PROPOSITION 2.3. - The following statements hold.

(a) a E S, if and only if it is minimal,

(b) fl E 55 if and only if it is maximal.

Remark 2.4. - The sequence 1 °° is the unique minimal sequence
starting with 1 and 0°° is the unique maximal one starting with 0. Therefore,
in view of Proposition 2.3, we see that each sequence from 6, 1 (resp.
from Ed B{0oo} starts with 0 (resp. 1).

We consider E, and £5 endowed with the order topology and let
S, x £8 be with the product topology. We note that E is strictly contained
in S, x E,5. To see this consider for example the set A == {O°O, 1 OO} of

admissible sequences. Since

we have that A and A C E6. In consequences
. However,

2.2. Rotation interval, twist periodic orbits and kneading pair.

We warn the reader that most of the results we are quoting from
other authors will be written in terms of class ,C unlike the original versions
which are stated for circle maps of degree one.

The notion of rotation number was introduced by Poincaré [19] for

homeomorphisms of the circle of degree one. This notion will be used to
characterize the set of periods of circle maps of degree one. Let F E ,C.

For x E R we define the rotation number of x as

and we denote it by p(x) or We denote by RF the set of all rotation
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numbers of F. From [17] (see also [20]) it follows that

with

. 

Therefore, in what follows the set RF will be called the rotation intervals

of F.

If A C R and x E R, we shall write x + A or A + x to denote the
set {.r + a : a E -A}. Also, if B C R we shall write A + B to denote the set

We shall say that a point x E R is periodic (mod. 1) of period q with
rotatzon number p/q for a map F E L if pq(x) - x = p and Fi (x) - 
for 1 = 1,..., q - 1. A periodic (mod. 1) point of period 1 will be called

fixed (mod. 1). Let F E L and let x E I~. The set n E Z+l + Z
will be called the (mod. 1) orbit o f x by F. It is not difficult to prove that
each point from an orbit (mod. 1) P has the same rotation number. Thus,
we can speak about the rotation number of P. If x is a periodic (mod. 1)
point of F of period q with rotation number p/q then its (mod. 1) orbit is
called a pert*odz’c (mod. 1) orbit of F of period q with rotation number p/q.
If P is a (mod. 1) orbit of F then we denote by Pi the set P n [i, i + 1) for
all i E Z. Obviously Pl = Z’+ Po and, if P has period q, then Card(Pi) - q
for all i 

Let P be a (mod. 1) orbit of a map F E 12. We say that P is a twist
orbit if F restricted to P is increasing. If a periodic (mod. 1) orbit is twist
then we say that P is a twist periodic orbit. The following result gives a
geometrical interpretation of the twist periodic orbits (see for instance [2]).

LEMME 2.5. - Let 1 be a twist

periodic orbit with period q and rotation number p/q. Then (p, q) = 1.

Moreover, if we assume that x2 if and only if i  j then Xi+p’

The following result, given in [3], Lemma 1, studies the relation

between the rotation number and twist orbits.

LEMME 2.6. - Let F E L and let a be an endpoint of RF. Then there
exists a twist orbit of F with rotation number a which is contained in a

union of closed intervals on which F is increasing. Moreover, if a -- p/q E Q
then this orbit can be chosen periodic (mod. 1) with period q.
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_ Now, we will study the basic properties of the sequences

I~ (a), Is (a), I~ (a) and 1,, (a). These sequences give the characterization
of the rotation interval by means of the kneading pair. The following result
is due to Alseda and Manosas (see [5], Theorem 6).

THEOREM 2.7. - Let F C ,C. Then RF = [a, b] if and only if

2.3. The O-product : an *-like product for the class of
Lorenz maps.

In the unimodal framework one of the main tools to explain the
renormalization properties is the well-known *-product. By using this

product it is possible to define, for each periodic kneading sequence A, a
map A * (.) from the set of all kneading sequences into itself. Then, if f is
a unimodal map having A * B as a kneading sequence, it follows that f is
renormalizable and the renormalization operator TZ acts in such a way that
the kneading sequence of R(f) is B. Thus, in some sense the *-product is
the inverse of the renormalization operator.

The main goal of this section is to construct an *-like product (called
the O-product) for the class of Lorenz maps by using the symbolic properties
of the twist periodic orbits.

We recall that .Cm denotes the class of all Lorenz maps which consists

on all maps F C .C such that F (0+ ) E ~0,1 ) F ( 1 + ) ~ 1. The set
of all admissible sequences of maps from Lm, denoted by is the set

~2 = union the set of finite sequences in the symbols f 0, If. We take
~~ _ (E2 and £§ = (~2 nE,5) B From Proposition 2.3 we
have that E; U {1°O} (resp. E6* U are all the minimal (resp. maximal)
sequences in ~2.

We endow E2 with the topology defined by the metric

This topology is compatible with the order topology given by the

lexicographical order in L:2. With this topology ~2 is a compact metric

space. Let ,S’ : ~2 -~ ~2 denote the usual shift transformation restricted
to ~2. Clearly, ,S’ is continuous. Set
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and consider So,, endowed with the product topology of E2 x ~2 given by

For a E R we will denote a - will

be denoted by Q*. To simplify the use of the sequences :
the following lemma will be helpful (see [4], (4.1 )-(4.3) ) .

LEMMA 2.8. - For any a E R the following statements hold:

Furthermore, if then

(b) If a e Z then = 8i(a) = a for all i &#x3E; 0.

We note that from this lemma it follows that if a - p/q E Q*
with (p, q) = 1 and q &#x3E; 2 then the finite sequences E2 (a) ... Eq-l(a) and
b2 (a) ~ ~ ~ bq_ 1 (a) are equal. We will denote this finite sequence by r(a).
We also define r( ~) to be the empty sequence.

Now we are ready to define the O-operator. Given d E f 0, 11 we will
denote 1 - d by d. Then, for a E Q* and AE)o,1, we define

be such that

and (31 = 1. Then

The next result, which we will be proved in Section 3, gives a first
motivation to the O-product.

The next theorem and corollary state the main properties of the

O-product.
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THEOREM B. - For any a E Q* the following statements hold :

(a) Let E be such that a  ~. Then

Moreover, for each cx = uTe have

(c) If K is quasidominated by (a, ~3) E then a 8 !5 is quasidominated
by

COROLLARY 2.11. - Let i . Then

445I - y - L/ - -,-

Proof. From the definition of Theorem B (b) and Remarks 2.4
and 2.9 it follows that x £; and (a (D a)’  On the

other hand, since (a, E E, from Theorem A and Proposition 2.2, we get
that a and j are quasidominated by (a, Thus from Theorem B (c) we
see that a O a and a are quasidominated by (a O a, a O Therefore,

’ by definition.

The above corollary motivates the following notation. In what follows,
given a E Q* and (a, ~3) we will denote the kneading pair (a8Q, 
by

Now we will start the study of the renormalization which undergoes
from the combinatorial structure of £0,1 given by the O product. Let
F E £m and assume that RF - fplql with p/q E Q* and (p, q) = 1. By
Lemma 2.6 we know that F has a twist periodic orbit P of period q and
rotation number p/q. Let J be the closed interval between two consecutive
points of P which contains 0 and denote the map Fq - p by G. One can

easily show that

(i) G fixes the endpoints of J

(ii) G is discontinuous at 0 and G is continuous and increasing on the
intervals [min J, 0) and (0, max J] -

We will say that the map F is renormalizable (compare with [9])
if
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Figure 3. An example of renormalization with pi q = 1/2.

In such a case, E ~0, 1 ~ we define

, ", , "’l-’-J’ ,’/ , ,

The map will be called the renormal2zed map of F. It turns out that
this renormalization process is very well described at a symbolic level by
the O product as shown by the following theorem.

we will denote

Of course, given E £0,1, Q O (a, ~3) stands for (a O a, a O Observe

that, in view of Corollary 2.11, a O (a, ~) is well defined and belongs to 
Moreover, if i also belongs to ?*.

A map F E will be called symbolically expansive if the map IF ( ~ )
from (o,1) to is injective. Such a condition is guaranteed by
usual topological conditions like F being topologically expansive or having
negative Schwarzian derivative.
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THEOREM C. - Let be such that

following statements hold:

(a) If F is renormalizable then

(b) If F is symbolically expansive and A

(a, /1) E then F is renormalizable.

is a contractive map from the compact
into itself. Therefore, there exists

, -,

such

As it has been said before this theorem gives a characterization of the
renormalizable Lorenz maps in terms of the kneading pairs. Theorem C (c)
is important because it gives a partial answer ( at the symbolic level) to
Conjecture 1.16 (1-2) of [15].

3. Proof of Theorem B.

We start this section by proving some preliminary results and

Proposition 2.10. Finally we will prove Theorem B.

The following lemma is due to Alseda and Manosas [4].

LEMMA 3.1. - The following statements hold :

.

From Theorem A and Proposition 2.3 we have the following.

LEMMA 3.2. Let a E Then are minimal and

are maximal.

Proof. We recall that
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Then, from the fact that 1 for all

x, y E M, we have that E t for all i &#x3E; 1. In a similar

way we can prove that 61 (a) - 1  bi (a)  61 (a) for all i &#x3E; 1. 11

LEMMA 3.4. Let a E (0,1 ) Then,

Proof. The statement follows from Lemmas 3.1 (a) and 2.8, the fact
that 8l(a) - 1 = E(a) = E(a) for each a ~ Z and Lemma 3.3.

a

Now, from Lemmas 3.4 and 3.2 we obtain:

COROLLARY 3.5. - Let a

LEMMA 3.6. Let a E Q* be with (p, q) = 1. Then El (a) + 1.

Proof. - If + 1 then, by Lemma 3.3, we can assume
than . By Lemma 3.1 and, by
Lemma 3.2,

Thus, by Lemma 3.3, ~2 (a) _ and, proceeding inductively, we obtain
that I ~ (a) _ a contradiction by Lemma 3.1 (a). D

The following remark already allows us to prove Proposition 2.10.

Remark 3.7. - For each a E Q*, in view of Lemmas 2.8 and 3.6, we
can write

Proof of Proposition 2.10. It follows from Remark 3.7 and the fact
that = 0. 0



875

LEMMA 3.8. - Let a = Then the

following statements hold:

(b) 

Proof. Since, by Remark 3.7 and Lemma 3.2, we have that

and it is minimal, then

then

a contradiction with the minimality of I; (a). This ends the proof of
the first inequality of (a). Now we prove the first inequality of (b).
Again by the minimality of : we have

equality holds, then we have

a contradiction. Hence,

To prove the second inequality of (b) note that, by Remark 3.7 and
Lemma 3.2, we have that
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and it is periodic of period q and minimal. Then, for I

since otherwise the equality holds and, consequently,
with j  q; a contradiction. This concludes the proof of the second

inequality of statement (b). The remaining inequalities of the lemma follow
in a similar way by using the sequences I~ (a) and I8 ( a) instead of Is (a)

D

Proof of Theorem B. We start proving (a). Set

Since a  /1, there exists k &#x3E; 1 such that a 1 a2 ... a-1 - ... 13k-I
and ak  Qk. Then, from the definition of the 0-product it follows

that  We note that in particular, from Proposition 2.10,
we have proved that

whenever cx 1 = 0 and

whenever cxl = 1. This ends the proof of (a).

Now we prove (b). We only will prove the first statement of (b). The
second one follows similarly. From Theorem 2.7 and Lemma 3.2 we have
a 8 0° e S§ C £6’ Therefore, we may assume that a = 0152l 01522 ... ~ 0° . By
Remark 2.4 we have al = 0. Consequently,

To end the proof statement (b) we have to prove that
for each j &#x3E; 1. Let a = p/q with

If am = 1, then âm = 0 and, since a is minimal, we have
If. I then clearly, we are done. Now we look at
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If = 1, obviously Assume that am = 0. The
= 01 and the desired inequality follows from Lemma 3.8(a) (recall

that a E Q*; that 0). Now, assume that 1  j  q - 1. Then

and, from Lemma 3.8 (b), we get This ends

the proof of statement (b).

Finally we prove (c). Assume that a = p~q with (p, q) = 1 and set
a ~1 ~2 - ~ ~ ~1 ~2 ~ ~ ~ . Since sn(Q) S !5, we obtain

8 Q) S a a similar way as above by using Lemma 3.8 (c) instead
of Lemma 3.8 (a) and Lemma 3.8 (d) instead of Lemma 3.8 (b). On the other
hand, from ~!5 and Lemma 3.8 (a)-(b) we obtain a o K.
This ends the proof of the theorem. D

4. Proof of Theorem C.

To prove Theorem C we need some technical results.

LEMMA 4.1. - The sets £*, S, and 55 are closed. Moreover, the set

£0,1 n .6* is compact in 

Proof. a sequence in E* which converges to

(~1, ~2). Clearly (~l, ~2) E x v1 and V2 are infinite and (vl , ~2)
verifies property (KP1). Since each (v 1 verifies property (KP2) we have
that v, for all j &#x3E; 0, n E N and I E fl,21. In view of the
continuity of ,S’, by taking limits, we have vl  5j (!!i) :::; v2 for all j &#x3E; 0

and i C {I, 2} (recall that the order topology is compatible with the metric
topology). Thus, (!!l, !!2) E ~* . The facts that S, and 55 are closed follow
in a similar way by using Proposition 2.3. Finally, in view of Remark 2.4 it
follows that 1 °° is an isolated point of E, and 0°° is isolated in E8. Therefore,

is compact. D

In the next lemma and in the proof of Theorem C we will use the

following notation. We will use the symbol s to denote +, - or 0. So, for
x E IIg, xs will stand for x+, x- or x, respectively. Also, if J is a closed
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interval from R such that 0 E Int(J), when writing x’ E J we will mean
that x E J but XS tJ- f (min J) -, (max J)+, 0 1. Finally, for XS E J we set

and

LEMMA 4.2. - Let F E ,Cm be such that RF - fplql with p E Z,
q E N and (p, q) - 1, and let J be a closed interval ofR obtained from F
as in the definition of a renormalizable map. Assume that 0 E Int(J) and
set G = Fq - p. Then the following statements hold:

(b) For each z E J and such that z’ E J we have

with d(z’) E {0,1}. In particular,

(c) Assume that min J  G(0+)  0  G(0-)  maxJ. Then, for each
z E J and s E {+, -, 0} such that zs, (G(zs))s E J we have

In particular,

and

Proof. Statement (a) follows from the definition of J, from the fact
that 0 C Int(J), [4, Lemma 4.4], and Proposition 2.10. Now we prove (b).
From Theorem 2.7 and Proposition 2.10 we have
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Thus

Let x E (min J, max J) B {0}. From [5], Lemma 1, it follows easily that

Therefore, from (4.1) and (a) we have

This proves (b).
Now we prove (c). We will start by showing that

Since min from (b) it follows that

and, consequently,

Now we prove the first statement of (c). Since (G(zs))s E J, from (b)
we have

Therefore, we have to see that ~00,11~. Assume
that x(zs) - 1. From the definition of X and (4.2) it follows that

I F (zs )  I F (0- ) . Therefore, from (a) and the part of (c)
already proved, we get

which shows that ~00,11~ when ;
then we obtain {00,11} in a similar way. This ends the
proof of the lemma. C7
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Proof of Theorem C. - We start by proving (a). We have to show
that

Since F is renormalizable, we have min J  G(0+)  0  G(0-)  max
and E ~G(0+), G(0-)~ C [minJ,maxJ] for each i E N.

Therefore, from the iterative use of Lemma 4.2 (c) we obtain

where, for i = 2, 3, ... we have that di (resp. dt) is

(resp. Gi(O+) 2 0) and 0 if  0 (resp. (

On the other hand,

(observe that G(O-) and G(0+) play the role of 0- and 0+ for Ra(F),
respectively). This ends the proof of (a).

To prove (b) we start by taking J as in the definition of a

renormalizable map. Since and

I ~ (0- ) - Thus, since (a, ~3) E by Proposition 2.10 and
Remark 2.4 we have

and, similarly, I F (0- ) &#x3E; I ~ (a) . On the other hand, from [4], Lemma 4.4,
it follows that if min J = 0 (respectively, max J = 0) then I F (0- ) = Î8( a)
(respectively, I F (0+ ) = _~ (a)). In consequence, min J  0  max J.

Now, to prove (b) it suffices to show that

Note that, since G is increasing and continuous on [min J, 0) and (0, max J]
it is enough to show that min ~J  G(0+)  0  G(0-)  maxJ,
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and ~((7(0’)) ~ ~(0’). We only will prove the

statements about G(0- ) . The other ones follow similarly.
First we will prove that 0  G(0- ) ~ maxJ. Observe that

Consequently, by
Lemma 4.2 (b),

Note that 0. Otherwise, by Theorem 2.7,
I F (0- ) &#x3E; 18(a) = 1- - - ; a contradiction.

Assume that G(0- )  0. Since min J and G is

increasing in we have G(O-) &#x3E; min J. Then, by Lemma 4.2 (b),
IF ( (G(0- ) ) - ) starts with 1; a contradiction. Thus, G(0- ) &#x3E; 0. Assume

now that G(0-) &#x3E; maxJ. By Lemma 4.2 (a) we know that

- . , - , , - , , -B.".0’" -1 ,

Moreover, from [5], Lemma 1 (since F is symbolically expansive and

G(o- ) &#x3E; maxJ) it follows that  Thus, since

is infinite, it follows that  I F ( (G (0- ) ) - ) and,
consequently,

So, there exists i &#x3E; 2 such that = 11; a contradiction. Hence, we have

proved that 0  G(0-)  max J.

Now we will prove that G(G(0-))  G(O-). To this end we

assume that G(G(0- ) ) &#x3E; G(0- ) . Then, there exists 0  z  

such that G(z) - z. Thus, G([z, max ]) = [z, max ] and, consequently,
G’(x) E [z, max J] for each i &#x3E; 0 and x E [z, max J] . Therefore, by
Lemma 4.2 (a,c) we see that

for each x E [z, max J]. This contradicts the fact that F is symbolically
expansive and, hence, G(G(0- ) )  G(0- ) . This ends the proof of (b).

Now we prove (c). Let a E Q* and Q,!1 E Set Q - 

and _3 - ~i/?2 " ’ and suppose that = 131. Then
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Thus,

for each a E (Q*)~. Observe that by Lemma 4.1 and Corollary 2.11 we
is compact and Moreover, if

then, by Remark 2.4,

This ends the proof of the theorem.
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